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Abstract

We present an approach to analyze learning outcomes in a broad class of misspec-
ified environments, spanning both single-agent and social learning. Our main results
provide general criteria to determine—without the need to explicitly analyze learning
dynamics—when beliefs in a given environment converge to some long-run belief either
locally or globally (i.e., from some or all initial beliefs). The key ingredient underlying
these criteria is a novel “prediction accuracy” ordering over subjective models that re-
fines existing comparisons based on Kullback-Leibler divergence. We show that these
criteria can be applied, first, to unify and generalize various convergence results in pre-
viously studied settings. Second, they enable us to identify and analyze a natural class
of environments, including costly information acquisition and sequential social learning,
where unlike most settings the literature has focused on so far, long-run beliefs can fail
to be robust to the details of the true data generating process or agents’ perception
thereof. In particular, even if agents learn the truth when they are correctly specified,
vanishingly small amounts of misspecification can lead to extreme failures of learning.
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1 Introduction

1.1 Motivation and overview

Motivated in part by empirical evidence that individuals face numerous systematic cognitive
or perception biases, a growing literature recognizes the need to enrich classic economic
models of single-agent and social learning by allowing for the possibility that agents may be
incorrect, or misspecified, about some aspects of the data generating process. Many papers
have demonstrated how various specific forms of misspecification alter learning outcomes in
a wide range of economic applications, from learning about the return to effort by a worker
who is overconfident in her ability, to social learning about the quality of a new product by
consumers who are incorrect about others’ preferences. Learning dynamics of such models
tend to be non-trivial to analyze, as standard properties of the correctly specified setting (e.g.,
the martingale property of beliefs) no longer apply when agents are misspecified. The analysis
is further complicated by the fact that in most aforementioned settings information depends
endogenously on agents’ actions, and hence may be influenced by their misspecification.1 As
a result, much existing work has derived learning outcomes using approaches tailored case-
by-case to each specific application, while only recently the focus has turned to developing
general tools to analyze the asymptotics of misspecified learning dynamics (see Section 1.2
for a discussion of related literature).

This paper contributes to the latter goal by presenting an approach to analyze learning
outcomes in a broad class of misspecified environments, spanning both single-agent and
social learning. Our main results provide general criteria to determine—without the need
to explicitly analyze learning dynamics—when beliefs in a given environment converge to
some long-run belief either locally or globally (i.e., from some or all initial beliefs). The key
ingredient underlying these criteria is a novel “prediction accuracy” ordering over subjective
models that refines existing comparisons based on Kullback-Leibler divergence. We show
that these criteria can be applied, first, to unify and generalize various convergence results in
previously studied settings. Second, they enable us to identify and analyze a natural class of
environments, where unlike most settings the literature has focused on so far, long-run beliefs
can fail to be robust to the details of the true data generating process or agents’ perception
thereof. In particular, even if agents learn the truth when they are correctly specified,
vanishingly small amounts of misspecification can lead to extreme failures of learning.

To nest a wide range of applications, Section 3 sets up an abstract framework, where
agents, actions, and preferences are not explicitly modeled. Instead, the primitive is a belief

1This contrasts with a literature in statistics that studies learning by a passive observer who receives
exogenous signals about which he is misspecified (e.g., Berk, 1966).
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process µt over a finite set of states of the world, which from any initial belief µ0, evolves in
the following manner. Each period t = 0, 1, . . ., a signal zt is drawn from a finite set according
to a true signal distribution Pµt(·) that—capturing endogeneity of signals—may depend on
the current belief µt. Following the realization of zt, belief µt is updated to µt+1 via Bayes’
rule based on the perception that the signal distribution at each state ω and belief µt is
P̂µt(·|ω). Capturing potential misspecification, the true signal distribution need not coincide
with any of the perceived distributions. Section 2 provides three simple economic examples,
to which we apply our results in Section 6.

Sections 4 and 5 present criteria to determine which point-mass beliefs δω are (i) locally
stable, (ii) globally stable, or (iii) unstable, in the sense that belief process µt converges to
δω either (i) from any initial belief that is sufficiently close to δω, or (ii) from all initial
full-support beliefs, or (iii) escapes any small enough neighborhood of δω.

Our criteria are based on an order over states that compares how well they predict the true
signal distribution at any given belief. This order depends only on the relationship between
the static primitives Pµ and P̂µ, and as such can be readily determined in a given misspecified
learning environment without the need to compute belief dynamics. Specifically, we say that
state ω p-dominates state ω′ at belief µ if the perceived signal distribution P̂µ(·|ω) in state
ω comes “closer” to the true distribution Pµ(·) than does the perceived distribution P̂µ(·|ω′)
in state ω′. Importantly, instead of measuring closeness using Kullback-Leibler divergence,
which features prominently in existing analyses of misspecified learning (e.g., Berk, 1966;
Esponda and Pouzo, 2016; Bohren and Hauser, 2018), we employ a refinement based on the
moment-generating function of the perceived log-likelihood ratio of states. As we will see,
this refinement plays an essential role in our stability analysis, by ensuring that throughout
any range of beliefs where p-dominance obtains, the (pth power of the) posterior ratio process
becomes a nonnegative supermartingale, thus locally restoring standard methods from the
correctly specified setting.

Based on this observation, Theorem 1 shows that δω is locally stable if ω strictly p-
dominates all other states ω′ at all beliefs µ in a neighborhood of δω, except possibly at
the belief µ = δω, where ω might be tied with some other states. Theorem 2 provides
an analogous criterion for instability. As we discuss, the possibility of ties at δω has the
key implication that learning outcomes need not be robust to the details of the underlying
environment, since slight perturbations to the true or perceived signal distributions can lead
to discontinuous changes in the sets of of locally stable and unstable beliefs.

While most of the literature so far has focused on settings that do not feature this possi-
bility (we illustrate this for the monopoly pricing example in Section 2), being able to analyze
environments where such failures of robustness might arise is important, as in these envi-
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ronments the correctly specified benchmark may provide a poor approximation of learning
outcomes under even vanishingly small amounts of misspecification. We exhibit a natu-
ral class of environments for which this possibility is relevant: These environments feature
non-identification at point-mass beliefs (NIP), where as beliefs grow confident in any given
state, perceived signal distributions become uninformative. Examples 2 and 3 in Section 2
highlight two economic applications that display NIP—costly information acquisition and
sequential social learning. We show that vanishingly small amounts of misspecification can
lead to extreme failures of learning in these settings, despite the fact that agents learn the
true state when they are correctly specified.

Turning to global stability, we provide two complementary criteria. Theorem 3 shows that
δω is globally stable if state ω uniquely survives the iterated elimination of strictly dominated
states, which we define analogously to the iterated elimination of dominated strategies in
games. We use Theorem 3 to obtain unified proofs of global convergence in several leading
active learning problems in the literature, including the aforementioned monopoly pricing
example, effort choice by an overconfident agent (Heidhues, Koszegi, and Strack, 2018), and
data censoring under the gambler’s fallacy (He, 2018). Theorem 4 presents an alternative
criterion that is based on iteratively combining beliefs other than δω into an unstable set,
from which µt eventually escapes with probability 1. We show that this criterion can be
applied to the costly information acquisition and sequential social learning examples above.

1.2 Related literature

Our paper builds on Esponda and Pouzo (2016), who define a general steady-state notion for
misspecified learning dynamics, Berk-Nash equilibrium, nesting other influential steady-state
concepts that capture more specific forms of misspecification (e.g., Eyster and Rabin, 2005;
Jehiel, 2005; Esponda, 2008; Spiegler, 2016). Section 3.3 adapts Berk-Nash equilibrium to
our setting.2 While it is known that any locally stable belief is a Berk-Nash equilibrium
(Lemma 2 establishes this in our setting), the converse is typically not the case. Thus, our
main contribution is to provide stability criteria that determine which Berk-Nash equilibria
learning dynamics in a given environment converge to locally or globally, and to identify
natural settings where the set of stable equilibria is sensitive to the details of the environ-
ment. As we will see, our criteria refine Berk-Nash equilibrium by comparing the prediction
accuracy of states at general beliefs µ, rather than only at equilibrium beliefs δω, and by mea-
suring prediction accuracy using our notion of p-dominance, which is more demanding than

2Esponda and Pouzo (2016) consider a setting where multiple agents learn jointly about a payoff-relevant
parameter and other agents’ behavior. Their setting nests single-agent active learning, but does not nest
social learning.
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the measure based on Kullback-Leibler divergence that underlies Berk-Nash equilibrium.
Several other papers also move beyond steady-state analysis and examine the convergence

of misspecified learning dynamics in a variety of single-agent and social learning settings:
Single-agent learning. While many papers focus on specific environments and forms

of misspecification (e.g., Nyarko, 1991; Heidhues, Koszegi, and Strack, 2018; Bushong and
Gagnon-Bartsch, 2019; He, 2018; Cong, 2019), some recent work analyzes belief conver-
gence in more general settings: Fudenberg, Romanyuk, and Strack (2017) consider a general
continuous-time model with binary states and Gaussian signals. Their approach uses the
fact that the belief process follows a one-dimensional stochastic differential equation. Heid-
hues, Koszegi, and Strack (2019) consider a continuous-state model with Gaussian prior and
signals. Their approach is based on stochastic approximation arguments and relies on the
fact that the posterior belief each period remains Gaussian. Closer to our paper, Esponda,
Pouzo, and Yamamoto (2019) consider a general finite-action model, which like ours does
not rely on any parametric assumptions. They show that, for large t, the time-average action
frequency evolves according to a particular differential inclusion; in the special case where
states are one-dimensional, they solve the differential inclusion under a unique identification
assumption that rules out NIP. Complementary to their paper, we focus on beliefs rather
than action frequencies, and we derive sufficient conditions for belief convergence that can
be checked from static primitives without considering dynamics (such as their differential
inclusion). In more recent work, Fudenberg, Lanzani, and Strack (2020) also study a general
finite action model and focus on action convergence instead of beliefs. They propose crite-
ria for the stability of Berk-Nash equilibrium actions, partly building on the p-dominance
method we introduce in this paper. In contrast to all aforementioned papers, we highlight
that learning outcomes can fail to be robust in environments featuring non-identification,
and we present results that are also applicable to social learning models.

Social learning. Several papers (e.g., Eyster and Rabin, 2010; Bohren, 2016; Gagnon-
Bartsch, 2017; Bohren, Imas, and Rosenberg, 2019) incorporate specific forms of misspec-
ification into sequential social learning models à la Bikhchandani, Hirshleifer, and Welch
(1992) and Banerjee (1992). Closer to our paper, Bohren and Hauser (2018) propose a gen-
eral framework that unifies and extends many of these models, as well as certain single-agent
settings.3 Unlike our paper, they focus more on the case of heterogeneous misspecifications,
but only consider binary state environments. They provide criteria for local and global
stability of beliefs that, like our criteria, can be checked without computing learning dy-

3Their framework can nest binary-state single-agent active learning. Moving beyond binary states allows
us to unify additional settings, for example those where convergence requires a sufficiently rich state space,
as in Example 1, Heidhues, Koszegi, and Strack (2018), He (2018).
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namics. Besides their focus on binary states, a key difference is that their criteria are based
on Kullback-Leibler divergence and that their results and proof technique do not apply to
environments featuring non-identification (see the discussion following Theorem 1). Under
an assumption that rules out NIP, they obtain that successful learning is robust to small
amounts of misspecification, in contrast with our Example 3 (see Remark 4). Our second
global stability criterion (Theorem 4) extends ideas underlying their global stability result to
a multi-state setting, while our first global stability criterion (Theorem 3) has no counterpart
in their paper.

While our abstract setting in Section 3, including the extension to profiles of beliefs in
Appendix G, nests the single-agent and social learning models above (subject to technical
details such as finite vs. continuous states or signals), some environments in the literature are
not nested, notably models with intertemporally correlated signals and social learning envi-
ronments with private action observations.4 The latter class of social learning environments
includes our previous paper, Frick, Iijima, and Ishii (2019), which, similar to Example 3,
highlights the fragility of successful learning against small amounts of misspecification about
others’ preferences. However, as we discuss in Remark 4, both the logic and nature of this
fragility result differs from the current paper, since the environment in Frick, Iijima, and
Ishii (2019) does not display NIP.

2 Illustrative examples

To preview some of our insights, we present three simple economic examples, to which we
will apply our results in Section 6. Remark 1 (Section 3) explains how our framework nests
these examples.

Example 1 (Monopoly pricing). In Section 6.1, we consider a monopolist who is learning
about his demand function. Each period t = 0, 1, . . ., the monopolist first sets a price at,
and then faces demand 1 with some probability ω∗ − βat ∈ (0, 1) and demand 0 with
complementary probability. The intercept of demand (“state”) ω∗ ∈ Ω = {ω1, . . . , ωN} is
unknown to the monopolist, who has a full-support prior µ0 ∈ ∆(Ω). Upon observing period-
t demand, the monopolist updates his belief to µt+1. However, in so doing, the monopolist
misperceives the slope of demand β to be β̂, where β, β̂ > 0. The monopolist myopically

4See, e.g., Rabin (2002); Ortoleva and Snowberg (2015); Cho and Kasa (2017); Esponda and Pouzo (2019);
Molavi (2019) for the former, and models of social learning on networks (e.g., Dasaratha and He, 2019) for
the latter.
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maximizes expected revenue each period, i.e., his price as a function of his current belief is

a(µ) = argmax
a∈R+

a
(
Eµ[ω]− β̂a

)
=

Eµ[ω]

2β̂
. (1)

By applying our results, we will show that when Ω is sufficiently rich, the monopolist’s long-
run belief under any prior is arbitrarily close to a point-mass on ω̂ = 2β̂ω∗

β̂+β
. State ω̂ has the

property that at belief δω̂, the monopolist’s perceived probability of high demand, ω̂−β̂a(δω̂),
equals the actual probability, ω∗ − βa(δω̂). In contrast with Esponda and Pouzo (2016)
and Heidhues, Koszegi, and Strack (2019), who establish analogous results using stochastic
approximation arguments that rely on the assumption that beliefs are Gaussian, our approach
does not require any distributional assumptions. We also note that successful learning is
robust to small amounts of misspecification, since as β̂ approximates β, ω̂ approximates the
true state ω∗. N

Our next two examples offer a sharp contrast to this robustness result:

Example 2 (Costly information acquisition). In Section 6.2, we consider an agent who
learns about some fixed and unknown state (e.g., her ability) by acquiring costly information
(e.g., seeking out expert feedback). The state ω∗ ∈ Ω = {ω1, . . . , ωN}, where 0 < ω1 < . . . <

ωN < 1, and the agent has a full-support prior µ0 ∈ ∆(Ω). Each period t = 0, 1, . . ., the
agent observes the realization of a signal zt that is 1 (“good news”) with some probability
q + γtω

∗ ∈ (0, 1) and 0 (“bad news”) with complementary probability. Here q is the state-
independent base rate of the high signal over which the agent has no control, and γt ∈ [0, γ]

is a precision parameter that the agent chooses at cost C(γt). Upon observing the realized
signal zt, the agent updates her belief to µt+1. However, in so doing, she misperceives the
base rate q to be q̂. For example, if q̂ < q, this implies a form of “ego-biased” belief-updating,
where the agent overreacts to good news about her ability but underreacts to bad news (e.g.,
Eil and Rao, 2011; Mobius, Niederle, Niehaus, and Rosenblat, 2014).

Note that true and perceived signal distributions are (Blackwell-)more informative the
greater γt and are uninformative when γt = 0. We assume the agent has positive value to
information, as captured by a utility v : ∆(Ω) → R that is continuous and strictly convex
in her current belief.5 Each period, she chooses γt as a function of her current belief µt to
myopically maximize expected utility net of the cost. That is,

γt = γ(µt) ∈ argmax
γ∈[0,γ]

Êµt [v(µt+1(γ))]− C(γ), (2)

5For example, suppose that v(µ) = maxa∈R Eµ[−(a− ω)2] is the indirect utility to a prediction problem
that the agent must solve at the end of each period (where realized payoffs are not observed until some
exogenously distributed stopping time).
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where µt+1(γ) denotes the agent’s random posterior following period-t signal realizations and
the agent’s expectation Êµt is with respect to her perceived signal distribution.

In Section 6.2, we first note that if information is costless (C is constant), then the
agent’s belief converges to a point-mass on the true state whenever q̂ is sufficiently close to
q. By contrast, if information is costly, we show that successful learning is highly fragile
against misspecification: Consider any strictly increasing C such that the agent learns the
true state whenever she is correctly specified (q̂ = q).6 If q̂ < q (resp. q̂ > q), we show
that the agent’s belief converges to a point-mass on the highest state ωN (resp. lowest state
ω1) from all initial beliefs, regardless of the true state ω∗. Thus, in the presence of costless
feedback, a small propensity for ego-biased interpretation of signals does not prevent the
agent from learning her ability. But if obtaining feedback requires just a slight amount of
effort, then even arbitrarily small amounts of this bias may be greatly amplified over time
and lead to drastic overconfidence in the long run. We show that the key difference is that
costly information acquisition leads to NIP: As the agent becomes increasingly confident in
any given state, she chooses to acquire less and less precise signals, because her value to
information vanishes. N

Example 3 (Sequential social learning). In Section 6.3, we consider social learning by
a sequence of heterogeneous agents. There is a fixed and unknown state (e.g., the safety
of a new product), ω∗ ∈ Ω = {ω1, . . . , ωN} with ω1 < . . . < ωN . Each period t = 0, 1, . . .,
agent t chooses a one-shot action zt ∈ {0, 1} (e.g., whether or not to adopt the product)
after observing a private signal st ∈ R about ω∗ and the public sequence (z0, . . . , zt−1) of
predecessors’ actions. Agents have private preference types θt ∈ R (e.g., risk attitudes), which
are drawn independently across agents, states, and signals according to a cdf F . Starting
with some full-support prior µ0 ∈ ∆(Ω), agent t chooses zt to maximize her expected utility

Eµt [u(zt, θt, ω)|θt, st],

where µt denotes the Bayesian update of µ0 based solely on the public action sequence
(z0, . . . , zt−1). However, in updating beliefs to µt, we assume that all agents misperceive the
type distribution F in the population to be some cdf F̂ .7

Under standard monotonicity and richness assumptions, we first note that agents learn
the true state when they are correctly specified (F̂ = F ). However, by applying our results,
we classify learning outcomes when F̂ 6= F , and show that successful learning is again highly
non-robust to misspecification. For example, when agents even slightly underestimate (resp.

6Lemma 7 clarifies under which conditions on C this is the case.
7The extension of our framework in Section 7 allows different agents to hold different perceptions F̂ .
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overestimate) the extent of risk tolerance in the population, their beliefs converge to a point-
mass on the highest (resp. lowest) safety level ωN (resp. ω1), no matter the true safety level
ω∗; and when agents underestimate the heterogeneity of risk attitudes, their beliefs may
fail to converge and cycle between different safety levels. As we will see, the key feature
behind this non-robustness is that a well-known feature of social learning again implies NIP:
As previous action sequences become increasingly indicative of any particular state, agents
put less and less weight on their private signals, so that new action observations become
increasingly uninformative. N

3 Model

3.1 Setup

We conduct our general analysis in the following abstract, “reduced-form” environment,
where agents, actions, and preferences are not explicitly modeled. This allows us to simul-
taneously nest a variety of single-agent and social learning models and simplifies exposition
by reducing notation.

Let Ω denote a finite set of states . At the beginning of each period t = 0, 1, . . ., there is
a belief µt ∈ ∆(Ω) over states, where ∆(Ω) := {µ ∈ R|Ω|+ :

∑
ω µ(ω) = 1}. The initial belief

µ0 is exogenous and has full support.8 The evolution of beliefs is determined as follows:
At the end of each period t, a signal zt from a finite set of signals Z is drawn according

to Pµt(·), where Pµ(·) ∈ ∆(Z) denotes the true signal distribution at current belief µ.
Upon observing signal zt, belief µt is updated to belief µt+1 via Bayes’ rule according to
a collection of conditional perceived signal distributions : At each current belief µ, the
perceived signal distribution conditional on state ω is P̂µ(·|ω) ∈ ∆(Z), and for all ω ∈ Ω,
the updated belief satisfies

µt+1(ω) =
µt(ω)P̂µt(zt|ω)∑

ω′∈Ω µt(ω
′)P̂µt(zt|ω′)

.

By allowing the true and perceived signal distributions to depend on the current belief, we
can nest applications where signals depend endogenously on agents’ actions, which depend
on their current beliefs; see Remark 1. Capturing possible misspecification, the true signal
distribution need not coincide with any of the perceived signal distributions; we refer to
the case where for some state ω∗, Pµ(·) = P̂µ(·|ω∗) for all µ, as the correctly specified

8The full-support assumption is without loss; if µ0 assigns zero probability to some states, the same
analysis and results below apply up to eliminating those states from Ω.
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benchmark.
Given any initial belief µ0 = µ, the true and perceived signal distributions jointly generate

a Markov process over beliefs (µt). Let Pµ denote the induced probability measure over
sequences of beliefs (µt) with µ0 = µ. We impose the following regularity assumption:

Assumption 1.

1. For each ω and µ, suppPµ(·) ⊆ suppP̂µ(·|ω).

2. There exists M <∞ such that P̂µ(z|ω)

P̂µ(z|ω′) ≤M for all ω, ω′, µ ∈ ∆(Ω) and z ∈ suppPµ.

3. For each ω, Pµ(·) and P̂µ(·|ω) are continuous in µ.

The first condition is standard in the literature and rules out the possibility of belief-
updating after a signal that is perceived to realize with zero probability. The second is a
technical condition that rules out unbounded perceived likelihood ratios.9 The third condi-
tion is not essential for our analysis, but simplifies the statements of our results.

Remark 1 (Examples). To illustrate the scope of applicability of this framework, we first
show how it nests the three simple examples from Section 2. In all three examples, Z = {0, 1}
and Ω ⊆ R, and the true signal distribution Pµ(·) = Pµ(·|ω∗) depends on some fixed and
unknown true state ω∗ ∈ Ω. Under monopoly pricing (Example 1), signals correspond to
high or low demand realizations, and the true and perceived probabilities of high demand
satisfy Pµ(1|ω∗) = ω∗ − βa(µ) and P̂µ(1|ω) = ω − β̂a(µ) for all µ and ω, where the price
a(µ) is given by (1). Likewise, under costly information acquisition (Example 2), the true
and perceived probabilities of high signal realizations satisfy Pµ(1|ω∗) = q + γ(µ)ω∗ and
P̂µ(1|ω) = q̂ + γ(µ)ω, where the precision γ(µ) is given by (2). Under sequential social
learning (Example 3), signal zt corresponds to agent t’s action and µt represents the public
belief that is based only on the history (z0, . . . , zt−1) of past actions. Given µt and state
ω, zt is stochastic due to the random realization of agent t’s type θt and private signal st.
Specifically, the true and perceived probabilities of action 0 satisfy

Pµt(0|ω∗) =

ˆ
F (θ∗(µst))φ(s|ω∗) ds, P̂µt(0|ω) =

ˆ
F̂ (θ∗(µst))φ(s|ω) ds,

where φ(·|ω) is the density of private signals in state ω, µst ∈ ∆(Ω) denotes the Bayesian
update of µt following private signal realization s, and for each ν ∈ ∆(Ω), θ∗(ν) denotes the
type who is indifferent between action 0 and 1 at belief ν.10

9Given condition 3, this condition is automatically satisfied if Pµ and P̂µ(·|ω) have full support for all µ
and ω, as is the case for the applications in Section 6.

10The assumptions we impose in Section 6.3 ensure that θ∗(ν) exists and is unique for each ν.
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Moving beyond Examples 1 and 2, the framework nests any other single-agent active or
passive learning model where each period, the agent chooses an action as a function of her
current belief (the agent’s policy need not be myopic), observes a signal whose realization
may depend on this action, and updates her belief based on a possibly misspecified model
of the signal distribution.11 Action sets may be continuous or discrete; in the latter case,
Assumption 1.3 can be met by assuming that the agent follows a stochastic choice rule that is
continuous in her belief (e.g., by introducing payoff perturbations as in Fudenberg and Kreps,
1993; Esponda and Pouzo, 2016).12 Moving beyond Example 3, the framework can incor-
porate other forms of homogeneous misspecification into any social learning environment in
which agents’ actions are Markovian in a public belief, including learning from market prices
(e.g., Vives, 1993) or strategic experimentation (e.g., Bolton and Harris, 1999). Moreover,
Appendix G extends the model to incorporate heterogeneous misspecification, accommodat-
ing further applications (see Section 7). N

3.2 Stability notions

Given any true and perceived signal distributions, we seek to analyze which long-run beliefs
µ∗ can arise, in the sense that process (µt) converges to µ∗ either locally or globally as a
function of initial beliefs. Formally, we consider the following stability notions:

Definition 1. Belief µ∗ ∈ ∆(Ω) is:

1. locally stable if for any γ < 1, there exists a neighborhood B 3 µ∗ such that Pµ[µt →
µ∗] ≥ γ for each initial belief µ ∈ B;13

2. globally stable if Pµ[µt → µ∗] = 1 for each initial belief µ;

3. unstable if there exists a neighborhood B 3 µ∗ such that Pµ[∃t, µt 6∈ B] = 1 for each
initial belief µ ∈ B \ {µ∗}.

Local stability requires that beliefs converge with positive probability to µ∗ from any
initial belief in some open set B around µ∗, where the probability of converging to µ∗ can
be made arbitrarily close to 1 as long as B is small enough. More strongly, global stability
requires that beliefs converge to µ∗ with probability 1 from any initial belief (recall that
initial beliefs are assumed full-support). By contrast, µ∗ is unstable if starting from any

11In addition to active learning, the dependence of perceived signal distributions on µ can also capture
certain departures from Bayesian updating, where the agent’s interpretation of signals depends on her current
belief (e.g., Bushong and Gagnon-Bartsch, 2019).

12Given such a stochastic choice rule, we treat Z as the product space of realized signals and actions.
13A neighborhood B of µ∗ is a relatively open subset of ∆(Ω) ⊆ R|Ω| that contains µ∗.
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initial belief µ 6= µ∗ in some small enough neighborhood B of µ∗, beliefs eventually escape
B with probability 1. Clearly, if µ∗ is unstable, it is not locally stable.

We call belief µ ∈ ∆(Ω) a point-mass if µ = δω assigns probability 1 to some state ω, and
mixed otherwise. Our analysis in this paper focuses on the stability of point-mass beliefs.
This is without loss of generality in environments that satisfy the following identification
condition at mixed beliefs, as is the case for all applications we consider in this paper:14

Lemma 1. Consider any mixed µ ∈ ∆(Ω) such that P̂µ(z|ω) 6= P̂µ(z|ω′) for some ω, ω′ ∈
supp(µ) and some z ∈ suppPµ(·). Then µ is unstable.

The condition requires that at the mixed belief µ, there is a possible signal realization
that leads beliefs at µ (and hence near µ, by continuity of P and P̂ ) to update in favor of one
state in the support of µ rather than some other state. This implies that the belief process
cannot settle down near µ.

3.3 Berk-Nash equilibrium

Before presenting our criteria for local and global stability of a belief δω, we note a necessary
condition for stability due to Esponda and Pouzo (2016). For any probability distribu-
tions P, P̂ ∈ ∆(Z), define the Kullback-Leibler (KL-)divergence of P̂ relative to P by
KL(P, P̂ ) :=

∑
z∈Z P (z) log P (z)

P̂ (z)
.15 When signals are drawn repeatedly according to the dis-

tribution P , this measures how close P̂ comes to predicting the long-run signal distribution,
by considering the expected log-likelihood ratio of signals between P and P̂ .

Adapting Esponda and Pouzo (2016) to our setting, given any true and perceived signal
distributions, we call belief δω a Berk-Nash equilibrium if

ω ∈ argmin
ω′∈Ω

KL
(
Pδω(·), P̂δω(·|ω′)

)
. (3)

Condition (3) is a fixed-point requirement, which says that at belief δω, the perceived sig-
nal distribution that comes closest to the true signal distribution Pδω(·) is the distribution
P̂δω(·|ω) in state ω. Thus, if beliefs converge to δω, then state ω itself best predicts the in-
duced long-run signal distribution. Analogous to Esponda and Pouzo (2016), we show that
this is a necessary condition for δω to be locally stable:16

14The condition can be violated in some active learning settings where the agent stops observing informative
signals at some mixed belief (e.g., in bandit problems or under specifications of costly information acquisition
that violate the condition in Lemma 7), or in social learning settings that feature herding.

15We use the convention that 0
0 = 0, 1

0 =∞, 0 log 0 = 0, and log∞ =∞.
16Esponda and Pouzo (2016) allow for mixed Berk-Nash equilibria and show in their setting (cf. foot-

note 1.2) that if beliefs converge to µ∗ with positive probability, then µ∗ must be a Berk-Nash equilibrium
belief (see their Lemma 2 and Theorem 2).
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Lemma 2. If δω is not a Berk-Nash equilibrium, then δω is unstable.

However, while condition (3) is necessary for local stability, it is in general not sufficient.
For instance, in the costly information acquisition setting of Example 2, we will see that all
point-mass beliefs δω are Berk-Nash equilibria at each true state ω∗, despite the fact that at
each ω∗ there is a single globally stable belief. Thus, our stability criteria will take the form
of refinements of Berk-Nash equilibrium.

4 Local stability, instability, and robustness

In this section, we present our criteria for local stability and instability of a belief δω and
point out that locally stable beliefs need not be robust to the details of the underlying
environment.

4.1 Prediction accuracy orders

Moving beyond the fixed-point condition (3) that underlies Berk-Nash equilibrium, our sta-
bility criteria are based on comparing the prediction accuracy of ω against other states ω′ at
general beliefs µ rather than only at belief δω. However, like condition (3), these prediction
accuracy comparisons are based only on the relationship between the “static” primitives Pµ
and P̂µ, and do not require considering the dynamics of the belief process µt.

Formally, given any belief µ, we say that state ω KL-dominates ω′ at µ, denoted
ω %µ ω

′, if

KL
(
Pµ(·), P̂µ(·|ω)

)
−KL

(
Pµ(·), P̂µ(·|ω′)

)
:=
∑
z

Pµ(z) log

(
P̂µ(z|ω′)
P̂µ(z|ω)

)
≤ 0. (4)

That is, at belief µ, the perceived signal distribution in state ω achieves lower KL-divergence
relative to the true distribution than does the perceived signal distribution in state ω′. We
write ω �µ ω′ if inequality (4) is strict. Note that δω is a Berk-Nash equilibrium if and only
if ω %δω ω

′ for all ω′ 6= ω.
Much of our stability analysis employs the following refinement of %µ that plays an

essential role in our proofs; see the discussion in Section 4.2. Given any p > 0, we say that
ω p-dominates ω′ at µ, denoted ω %p

µ ω
′, if

∑
z

Pµ(z)

(
P̂µ(z|ω′)
P̂µ(z|ω)

)p

≤ 1, (5)
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and we write ω �pµ ω′ if inequality (5) is strict.17 To see the connection between p-dominance

and KL-dominance, consider the random variable X = log
(
P̂µ(z|ω′)
P̂µ(z|ω)

)
, i.e., the perceived log-

likelihood ratio of states ω′ vs. ω, when signals z are drawn according to the true signal
distribution Pµ(·). Then the left-hand side of (4) is the expectation of X, while the left-hand
side of (5) is the moment-generating function MX(p) = E[epX ] of X evaluated at p.18

Whereas %µ is complete (by the representation on the LHS of (4)), %p
µ is in general

incomplete. However, as the following lemma shows, the p-dominance orders are nested and
approximate KL-dominance as p→ 0, in the sense that p-dominance implies KL-dominance
and the converse holds for small p. This follows from the fact that E[X] = M ′

X(0), MX(0) =

1, and MX(p) is convex in p. We also note that both orders are continuous in µ.

Lemma 3. Fix any belief µ and states ω, ω′.

1. If ω �pµ ω′ for some p > 0, then ω �µ ω′ and ω �qµ ω′ for all q ∈ (0, p).

2. If ω �µ ω′, then there exists p > 0 such that ω �pµ ω′.

3. The left-hand sides of (4) and (5) are continuous in µ.

In the correctly specified benchmark, where for some ω∗, Pµ(·) = P̂µ(·|ω∗) for all µ, the
true state ω∗ p-dominates all other states for any p ∈ (0, 1]. Indeed, Jensen’s inequality
implies that ω∗ %p

µ ω for all µ and ω 6= ω∗; moreover, ω∗ �pµ ω if Pµ(·) 6= P̂µ(·|ω) and p ∈
(0, 1). Finally, we note that p-dominance bears some formal resemblance to a generalization
of KL-divergence known as Rényi divergence. However, whereas KL-dominance amounts
to comparing the KL-divergences KL(Pµ(·), P̂µ(·|ω)) and KL(Pµ(·), P̂µ(·|ω′)), p-dominance is
not equivalent to comparing the corresponding Rényi divergences.19

4.2 Local stability and instability

Our first main result provides a sufficient condition for belief δω to be locally stable:

Theorem 1 (Local stability). Consider any ω ∈ Ω. Then belief δω is locally stable if there
exists p > 0 and a neighborhood B 3 δω such that

ω �pµ ω′ for all ω′ 6= ω and µ ∈ B \ {δω}. (6)
17Note that ω �pµ ω′ implies ω′ 6%pµ ω. Indeed, by Lemma 3 below, ω �pµ ω′ implies ω �µ ω′; moreover, the

same argument implies that if ω′ %pµ ω, then ω′ %µ ω. Thus, the claim holds as ω �µ ω′ implies ω′ 6%µ ω.
18In the correctly specified setting, the moment-generating function of the log-likelihood ratio is also known

as the Hellinger transform; see, e.g., Moscarini and Smith (2002); Deb and Ishii (2016) for applications.
19Formally, P̂µ(·|ω) displays lower p-Rényi divergence relative to Pµ(·) than does P̂µ(·|ω′) if∑
z Pµ(z)

(
Pµ(z)

P̂µ(z|ω)

)p
≤
∑
z Pµ(z)

(
Pµ(z)

P̂µ(z|ω′)

)p
. This implies (4) in the limit as p → 0, but is not equiva-

lent to (5) for a given p > 0.
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That is, δω is locally stable if for some p > 0, state ω strictly p-dominates all other states
at all beliefs in some neighborhood of δω, except possibly at the belief δω, where this dom-
inance need only be weak.20 Thus, condition (6) strengthens Berk-Nash equilibrium, which
requires that ω weakly KL-dominates all other states at the belief δω itself, by comparing
the prediction accuracy of ω against other states at beliefs in a neighborhood B of δω and
by imposing strict p-dominance rather than weak KL-dominance throughout B \ {δω}.

Two features of Theorem 1 are important to note. First, the fact that (6) does not impose
strict dominance at the belief δω will play a key role in this paper: As we discuss in Section 4.3,
this allows us to analyze settings in which locally stable beliefs can be highly sensitive to
the details of the environment. This is ruled out by Bohren (2016) and Bohren and Hauser’s
(2018) more demanding (binary-state) criterion, whereby δω is locally stable if ω strictly
KL-dominates all other states at δω: As Corollary 1 shows, Theorem 1 implies that beliefs
satisfying the latter criterion are robustly locally stable, i.e., their local stability is preserved
under small perturbations of the environment. The proof approach in the aforementioned
papers is different from ours and does not extend to settings without strict dominance.21

Second, the use of p-dominance, rather than KL-dominance, is essential in Theorem 1,
as well as in several subsequent results. To see the idea, suppose that Ω = {ω, ω′} is binary.
Starting at any µ0 ∈ B, the key is to consider the stopped process corresponding to the pth
power of the posterior ratio of ω′ vs. ω until the first time that beliefs exit B, i.e.,

`t :=

(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)p
with τ := inf{t′ : µt′ 6∈ B},

and to note that (6) implies that `t is a nonnegative supermartingale with respect to Pµ0

and the filtration generated by (µt).22 Thus, by Doob’s convergence theorem, `t converges
almost surely to a nonnegative random limit `∞. Based on this, we show, first, that if the
belief process µt remains in B forever with positive probability, then conditional on this
event, µt converges to δω almost surely: Otherwise, the random limit belief µ∞ ∈ B would
be mixed with positive probability; this is impossible, as (6) together with Lemma 1 implies
that all mixed beliefs in B are unstable. Second, by applying the Markov inequality to `∞,

20The fact that ω %pδω ω
′ follows from (6) and the continuity of %pµ in µ (Lemma 3.3).

21Specifically, building on Smith and Sørensen (2000), they (locally) approximate the log-likelihood ratio
process under (P, P̂ ) by the corresponding process under a different environment (Q, Q̂) with the property
that Qµ, Q̂µ are independent of µ and that beliefs converge to δω a.s. This approach requires the log-
likelihood ratio process under (P, P̂ ) to have non-vanishing drift near δω, which implies that ω �δω ω′ for
ω′ 6= ω.

22Indeed, EPµ0 [`t+1|(µt′)t′≤t] =

`t if µt′ /∈ B for some t′ ≤ t∑
z Pµt(z)

(
P̂µt (z|ω

′)

P̂µt (z|ω)

)p
`t ≤ `t otherwise

, where the

second line holds by (6).
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we show that the probability that µt remains in B forever can be made arbitrarily close to
1 by restricting to initial beliefs µ0 in a small enough subneighborhood B′ ⊆ B around δω.
Combining these observations implies that δω is locally stable.

The role of p-dominance in the above argument is to ensure that the stopped process `t
is a nonnegative supermartingale. Thus, locally, we are able to apply standard tools (e.g.,
Doob’s convergence theorem), generalizing arguments in the correctly specified setting, where
the unstopped process µt(ω)

µt(ω∗)
at the true state ω∗ is a nonnegative martingale. Importantly,

analogous arguments do not apply if p-dominance is replaced with KL-dominance: If (6) is
weakened to the assumption that there exists some neighborhood B 3 δω such that

ω �µ ω′ for all ω′ 6= ω and µ ∈ B \ {δω}, (7)

this implies that the stopped process log
(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)
is a supermartingale.23 However,

this process may be unbounded below, since µmin{t,τ}(ω
′)

µmin{t,τ}(ω)
can be arbitrarily close to 0 as µt

approaches δω. Indeed, Example 5 in Appendix E shows that (7) does not imply that δω is
locally stable.

Our next result provides a sufficient condition for instability of δω:

Theorem 2 (Instability). Consider any ω ∈ Ω. Then belief δω is unstable if there exists a
neighborhood B 3 δω such that

for some ω′ 6= ω, we have ω′ �µ ω for all µ ∈ B \ {δω}. (8)

Similar to the local stability condition (6), our instability criterion (8) requires that ω
is strictly dominated by some other state ω′ at all beliefs in a neighborhood of δω, except
possibly at belief δω itself. However, in contrast with (6), condition (8) can be stated in
terms of KL-dominance rather than p-dominance. This is because, unlike in the case of local
stability, we can ensure that the process log

(
µmin{t,τ}(ω)

µmin{t,τ}(ω′)

)
, where τ is the exit time from B,

is a supermartingale that is bounded below, by choosing the neighborhood B to be bounded
away from δω′ . The proof of Theorem 2 then applies the Doob convergence theorem to this
stopped process and shows that µt leaves B almost surely.

In Section 6.3, we will illustrate Theorems 1 and 2 by applying them to the social learning
environment from Example 3.

23By Lemma 3, (7) is equivalent to the requirement that for each µ ∈ B \ {δω}, there exists p > 0 such
that ω �pµ ω′ for all ω′ 6= ω. This is weaker than (6), as p need not be uniform across µ ∈ B \ {δω}.
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4.3 Stability vs. robustness

The fact that Theorems 1 and 2 do not impose strict dominance at the point-mass belief δω
opens the door to analyzing settings where long-run beliefs can be highly sensitive to the
details of an environment. To see this, we contrast our local stability criterion (6) with the
stronger requirement that δω is a strict Berk-Nash equilibrium, in the sense that ω �δω ω′

for all ω′ 6= ω. For such beliefs δω, Theorem 1 implies that δω is locally stable and that the
local stability of δω is robust to slightly perturbing the true or perceived signal distributions:

Corollary 1 (Robust local stability of strict Berk-Nash equilibria). Suppose δω is a strict
Berk-Nash equilibrium at environment (P, P̂ ). Then there exists ε > 0 such that δω is locally
stable in every environment (Q, Q̂) that is an ε-perturbation of (P, P̂ ), in the sense that
KL(Qµ, Pµ) < ε and KL(Q̂µ(·|ω′), P̂µ(·|ω′)) < ε for all ω′ ∈ Ω, µ ∈ ∆(Ω).

Corollary 1 holds because if ω �δω ω′, then Lemma 3 yields some p such that ω �pµ ω′ at
all beliefs µ in a neighborhood of δω, including at belief µ = δω, and these strict dominance
relations are preserved under small enough perturbations of the environment. By contrast,
this logic fails if (6) obtains without strict dominance at δω, as in that case, even slight
perturbations of the environment might reverse the prediction accuracy ranking between ω
and ω′ at beliefs near δω, rendering δω unstable. As a result, whereas much of the existing
literature has focused on environments where locally stable beliefs are strict Berk-Nash
equilibria and hence are robust,24 Theorem 1 suggests the possibility of locally stable beliefs
that are not robust.

In Sections 6.2 and 6.3, we illustrate this possibility in the context of two natural eco-
nomic applications—costly information acquisition and social learning—by deriving the stark
failures of robustness we previewed in Section 2. The common feature of both environments
is that agents’ incentives generate the following identification failure at point-mass beliefs:

Definition 2. Environment (P, P̂ ) features non-identification at belief δω if

P̂δω(·|ω′) = P̂δω(·|ω′′), ∀ω′, ω′′.

More strongly, (P, P̂ ) features non-identification at point-mass beliefs (NIP) if it
features non-identification at δω for all ω ∈ Ω.

24See, e.g., Bohren (2016), Bohren and Hauser (2018), Fudenberg, Romanyuk, and Strack (2017), and
Example 1, as well as (up to discretization) Heidhues, Koszegi, and Strack (2018) and He (2018). Bohren and
Hauser (2018) explicitly establish the robustness of successful learning to small amounts of misspecification
in their setting (see Remark 4).
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By continuity of P̂ , non-identification at δω is equivalent to the requirement that

lim
µ→δω

P̂µ(·|ω′) = lim
µ→δω

P̂µ(·|ω′′), ∀ω′, ω′′.

That is, as beliefs grow confident in state ω, perceived signal distributions become increas-
ingly uninformative, in the sense that they differ less and less across states, and they are fully
uninformative at δω. Clearly, this implies that all states have the same prediction accuracy
at δω, as the comparisons (4) and (5) between any two states hold with equality at δω. In
particular, under NIP, all point-mass beliefs δω are Berk-Nash equilibria, but none are strict
Berk-Nash equilibria, and thus Corollary 1 does not apply.

5 Global stability

Global stability is a significantly more demanding notion than local stability. For instance,
even if δω is the unique locally stable belief, it need not be globally stable (see Example 4
below). In this section, we present two criteria for global stability that strengthen the local
stability criterion in Theorem 1 in complementary ways.

Our first approach employs a generalization of global stability to sets of beliefs: Call
K ⊆ ∆(Ω) a globally stable set if Pµ[infν∈K ‖µt − ν‖ → 0] = 1 for every initial belief µ.
Note that ∆(Ω) is trivially globally stable. We show that global stability is preserved under
the following process of iterated elimination of dominated states, defined similarly to the
iterated elimination of dominated strategies in games. Formally, for each subset Ω′ ⊆ Ω, let

S(Ω′) := {ω ∈ Ω′ : 6 ∃ω′ ∈ Ω′ s.t. ω′ �µ ω for all µ ∈ ∆(Ω′)}

= {ω ∈ Ω′ : 6 ∃ω′ ∈ Ω′ and p > 0 s.t. ω′ �pµ ω for all µ ∈ ∆(Ω′)},

where the equality holds by analogous arguments as in Lemma 3 and by compactness of
∆(Ω′).25 Then recursively define S0(Ω) := Ω, Sk+1(Ω) := S(Sk(Ω)) for all k = 0, 1, . . ., and
S∞(Ω) :=

⋂
k∈N S

k(Ω).

Theorem 3. The set ∆ (S∞(Ω)) is globally stable. In particular, if S∞(Ω) = {ω} for some
ω ∈ Ω, then belief δω is globally stable.

To prove Theorem 3, we show inductively that ∆
(
Sk(Ω)

)
is globally stable for all k.

Since ∆(Ω) is globally stable, it suffices to show that whenever ∆(Ω′) is globally stable for
some Ω′ ⊆ Ω, then so is ∆ (S(Ω′)). To see the idea, suppose that S(Ω′) = Ω′ \ {ω′}. Then

25See the proof of Theorem 3 for details.
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for some p and ω′′ ∈ Ω′, we have ω′′ �pµ ω′ for all µ ∈ ∆(Ω′), and hence also ω′′ �pµ ω′ for all
µ in any small enough neighborhood B ⊇ ∆(Ω′).26 Similar to Theorem 1, this implies that(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω′′)

)p
with τ = inf{t : µt 6∈ B} is a nonnegative supermartingale; that from any

initial µ ∈ B, µt remains forever in B with positive probability; and that µt(ω′) converges to
0 almost surely conditional on remaining in B. We show that combined with the assumption
that ∆(Ω′) (and hence B ⊇ ∆(Ω′)) is globally stable, this implies that ∆(Ω′\{ω′}) is globally
stable.

In Section 6.1, we will apply Theorem 3 to the monopoly pricing example from Section 2.
More generally, Appendix F highlights a class of continuous-state environments where it-
erated elimination of dominated states yields a unique outcome. The prediction accuracy
orders in these environments display a form of complementarity or substitutability, parallel-
ing conditions for dominance solvability in games with strategic complements or substitutes.
In addition to the monopoly pricing example, these environments nest several leading active
learning settings in the literature, including Heidhues, Koszegi, and Strack (2018) and He
(2018). Thus, we show that (up to discretization of the state space) Theorem 3 provides a
simple and unified method to establish global stability in these settings.

The approach in Theorem 3 was to show that δω is globally stable by employing a set-
valued notion of global stability and iteratively considering a decreasing sequence of globally
stable sets that contain δω. Complementary to this, the idea behind our second global
stability criterion is to employ a set-valued notion of instability and to ensure that the set
∆(Ω \ {ω}) of beliefs that put zero probability on ω is unstable, by iteratively considering
an increasing sequence of unstable sets contained in ∆(Ω \ {ω}).

We call K ⊆ ∆(Ω) an unstable set if there exists a neighborhood B of K such that
Pµ[∃t, µt 6∈ B] = 1 for every initial belief µ ∈ B \K. As a preliminary result, we note that
global stability holds under the following strengthening of our local stability criterion:

Lemma 4. Suppose Ω = {ω1, . . . , ωN} is such that

(i) δω1 satisfies the condition for local stability in Theorem 1;

(ii) ∆ ({ω2, . . . , ωN}) is unstable;

(iii) for any mixed µ ∈ ∆(Ω), there is z ∈ suppPµ(·) with P̂µ(z|ω1) > P̂µ(z|ωn) for all n 6= 1.

Then δω1 is globally stable.

Clearly, condition (ii) is necessary for global stability of δω1 . Except when N = 2,
condition (iii) is a stronger identification requirement than the condition for instability of

26Call B a neighborhood of a set K ⊆ ∆(Ω) if there exists ε > 0 such that {µ ∈ ∆(Ω) : ‖µ−ν‖ < ε} ⊆ B
for all ν ∈ K.
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mixed beliefs in Lemma 1, as for each mixed belief it postulates a possible signal realization
that favors state ω1 over all other states. However, the condition is still quite weak, in that
it imposes no restrictions on the prediction accuracy order over states.

To see the idea behind Lemma 4, let neighborhoods B1 3 δω1 and B2 ⊇ ∆ ({ω2, . . . , ωN})
be as given by conditions (i) and (ii). Observe first that from any belief in B2, µt escapes
B2 almost surely. Second, for any belief µ /∈ B1 ∪ B2, condition (iii) yields a possible signal
realization zµ that favors ω1 over all other states, where infµ/∈B1∪B2

P̂µ(zµ|ω1)

P̂µ(zµ|ωn)
> 1 for all n 6= 1.

Since infµ/∈B1∪B2 µ(ω1) > 0, by considering sufficiently long sequences of such signals, we can
find a finite T such that with positive probability, µt reaches B1 within T periods from any
initial belief µ /∈ B1 ∪ B2. Finally, whenever the belief process reaches B1, the same logic
as in Theorem 1 implies that µt remains in B1 with positive probability and conditional on
remaining in B1 converges to δω1 almost surely. Combining these observations, we show that
µt converges to δω1 almost surely from any initial belief.

When N = 2, the logic above parallels global stability arguments in Bohren (2016), who
establishes an analog of Lemma 4 under her stronger local stability condition that requires
strict KL-dominance at δω1 . When N > 2, the challenge in applying Lemma 4 is to find a
tractable way to verify condition (ii). The following example illustrates that it is not enough
to verify that each of δω2 , . . . , δωN is individually unstable, and instead suggests additional
conditions that ensure the instability of ∆({ω2, . . . , ωN}):27

Example 4 (Three states). Suppose Ω = {ω1, ω2, ω3} satisfies conditions (i) and (iii) in
Lemma 4 and suppose that δω2 and δω3 are unstable. These conditions alone do not guarantee
that ∆({ω2, ω3}) is unstable. For example, they are consistent with the possibility that ω1

has strictly lower prediction accuracy than both ω2 and ω3 at all beliefs µ that put sufficiently
small weight on ω1, in which case for any small enough neighborhood B of ∆({ω2, ω3}), there
is positive probability that µt remains forever in B.28

However, suppose in addition that the logic in Lemma 4 applies to the comparison be-
tween ω2 vs. ω3; that is,

(i’) there exists p > 0 and a neighborhood B 3 δω2 with ω2 �pµ ω3 for all µ ∈ B \ {δω2};

(iii’) for each mixed µ ∈ ∆({ω2, ω3}), there is z ∈ suppPµ with P̂µ(z|ω2) > P̂µ(z|ω3).
27Bohren and Hauser (2018) extend the global stability arguments in Bohren (2016) in a different direc-

tion, continuing to assume N = 2 but allowing for profiles of heterogeneous beliefs. In our extension to
heterogeneous beliefs (Appendix G), we do not pursue a generalization of Theorem 4.

28If ω2, ω3 �pµ ω1 whenever µ(ω1) < ε, then for any small enough neighborhood B of ∆({ω2, ω3}),(
µmin{t,τ}(ω1)

µmin{t,τ}(ω2)

)p
+
(
µmin{t,τ}(ω1)

µmin{t,τ}(ω3)

)p
with τ = inf{t : µt /∈ B} is a supermartingale. Thus, the same logic

as in Theorem 1 implies that from any initial µ ∈ B, µt remains in B forever with positive probability. It is
worth noting that even though, as in Lemma 4, condition (iii) ensures that from each mixed belief µ, there is
a time Tµ by which µt reaches B1 with positive probability, Tµ is unbounded across B, as infµ∈B µ(ω1) = 0.
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Figure 1: Illustration of Example 4. By instability of δω2
and δω3

, there are neighborhoods B2 3 δω2

and B3 3 δω3
from which beliefs eventually escape a.s. By (i’), we can choose B2 small enough that(

µmin{t,τ}(ω3)

µmin{t,τ}(ω2)

)p
with τ = inf{t′ : µt′ 6∈ B2} is a supermartingale. For any small enough neighborhood B23 ⊇

∆({ω2, ω3}), we then have the following: First, µt a.s. escapes B3∩B23. Second, analogous to Lemma 4, (iii’)
yields some finite T such that with positive probability, from any initial belief µ ∈ B23 \ (B2 ∪B3), µt either
exits B23 or reaches B2 within T periods. Finally, from any belief in B2 ∩ B23, µt exits B23 with positive
probability; otherwise µt would exit a.s. into B23 \ B2, which contradicts the fact that

(
µmin{t,τ}(ω3)

µmin{t,τ}(ω2)

)p
is a

supermartingale. Combining these observations, we can show that µt exits B23 almost surely.

Then Theorem 4 below shows that ∆({ω2, ω3}) is unstable. Figure 1 illustrates the basic
idea. N

Theorem 4 generalizes the logic in Example 4 to arbitrary N . Suppose conditions (i)
and (iii) from Lemma 4 hold and each δω2 , . . . , δωN is unstable. Moreover, impose analogs of
conditions (i’) and (iii’) above to the comparison between ωN−1 vs. ωN , between ωN−2 vs.
{ωN−1, ωN}, ..., and between ω2 vs. {ω3, . . . , ωN}. Then iteratively applying the three-state
logic above ensures that ∆({ωn, . . . , ωN}) is unstable for all n 6= 1. Thus, δω1 is globally
stable by Lemma 4. The result reduces to Lemma 4 when Ω is binary.

Theorem 4. Suppose Ω = {ω1, ..., ωN} is such that

(i) for all n 6= N , there exists p > 0 and a neighborhood B 3 δωn with

ωn �pµ ωk for all k > n and µ ∈ B \ {δωn};

(ii) for all n 6= 1, δωn is unstable;

(iii) for all n 6= N and mixed µ ∈ ∆({ωn, . . . , ωN}), there is z ∈ suppPµ(·) with P̂µ(z|ωn) >

P̂µ(z|ωk) for all k > n.

Then δω1 is globally stable.
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Theorem 4 applies to any environment with the following order structure that is natural
in several economic applications; in particular, as we will see in Sections 6.2 and 6.3, this
is satisfied by the costly information acquisition and sequential social learning environments
from Section 2:

Remark 2. Suppose that both states and signals can be ordered in such a way that (a)
perceived signal distributions P̂µ(·|ω) are strictly FOSD-increasing in ω; and (b) near point-
mass beliefs, lower states provide better prediction accuracy than higher states, i.e., for each
ω, there exists a neighborhood B 3 δω and p such that ω′ < ω′′ implies ω′ �pµ ω′′ for all
µ ∈ B \ {δω}. Enumerating states in increasing order, property (a) implies that the lowest
signal satisfies condition (iii) in Theorem 4, while (b) implies conditions (i) and (ii). N

Note that in binary state spaces, Theorem 3 is a strictly more demanding criterion than
Theorem 4. However, in larger state spaces the two results are complementary: On the one
hand, Theorem 4 only restricts the prediction accuracy order near point-mass beliefs, while
Theorem 3 also restricts the order at interior beliefs (e.g., for Theorem 3 to have bite, at
least one state must be dominated at all beliefs). But on the other hand, the specific form
of restrictions imposed by Theorem 4 near point-mass beliefs (i.e., that ωn dominates ωk for
all k > n) is not needed in order to apply Theorem 3.

6 Applications

To illustrate the preceding results, we apply them to the three illustrative examples from
Section 2. In these examples, the true signal distribution Pµ(·) = Pµ(·|ω∗) depends on some
fixed and unknown true state ω∗ ∈ Ω, and accordingly, we index our stability results by ω∗.

6.1 Monopoly pricing

We first revisit the monopoly pricing problem from Example 1. Throughout, we fix some
ω, ω ∈ (0, 1) with ω < 2ω and consider state spaces Ω = {ω1, . . . , ωN} with ω ≤ ω1 <

. . . < ωN ≤ ω. We also assume that 2β̂
β
> ω

ω
. This ensures that the true and perceived

probabilities of high demand satisfy ω∗ − βa(µ), ω− β̂a(µ) ∈ (0, 1) for all states and beliefs.
As noted, Esponda and Pouzo (2016) and Heidhues, Koszegi, and Strack (2019) analyze

instances of this problem in a continuous state space setting with Gaussian beliefs and
demand and show that the unique globally stable belief is a point-mass on ω̂ = 2β̂ω∗

β̂+β
, which is

the unique solution to the requirement that at δω̂, the true and perceived probabilities of high
demand coincide. In our finite state space setting, a simple application of Theorem 3 yields
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a discrete approximation of this result that does not rely on distributional assumptions:
If ω < ω̂ < ω and states in Ω are sufficiently dense in [ω, ω], then an arbitrarily small
neighborhood around δω̂ is globally stable.29 To state the result, we say that Ω is δ-dense
in [ω, ω] if Ω ∩ (ω − δ, ω + δ) 6= ∅ for all ω ∈ [ω, ω].

Proposition 1. Suppose ω < ω̂ := 2β̂ω∗

β̂+β
< ω. For any η > 0, there exists δ ∈ (0, η) such

that if Ω is δ-dense in [ω, ω], then ∆ (Ω ∩ (ω̂ − η, ω̂ + η)) is globally stable at ω∗.

The proof of Proposition 1 first shows that iterated elimination of dominated states
in the continuous state space Ω = [ω, ω] yields S∞(Ω) = {ω̂}, and then establishes that
S∞(Ω) approximates S∞(Ω) arbitrarily closely whenever Ω is sufficiently dense in Ω. To
see why S∞(Ω) = {ω̂}, let m(ω) denote the %δω -maximal state in Ω, which is given by
m(ω) := min{max{ω, ω∗ + (β̂−β)ω

2β̂
}, ω} for each ω. Suppose β̂ ≥ β, so that m(·) is weakly

increasing (the case β̂ < β is analogous). Then one can verify that iterating S(·) over Ω

corresponds to iterated application of m(·) to the end-points of Ω, i.e.,

Sk(Ω) = [mk(ω),mk(ω)] for all k.

Given this, S∞(Ω) = {ω̂} follows by observing that m(·) is a contraction with fixed point ω̂.
Observe that state ω̂ = 2β̂ω∗

β̂+β
converges to the true state ω∗ as β̂ approaches β. Thus,

Proposition 1 suggests that the monopolist comes arbitrarily close to learning the true state
whenever his amount of misperception is sufficiently small and states in Ω are sufficiently
finely spaced. Indeed, the following result shows that in any fixed finite state space, the
monopolist exactly learns the true state whenever his amount of misperception is sufficiently
small. To state this, we say that learning is successful at ω∗ if in state ω∗, we have
Pµ[µt → δω∗ ] = 1 for all beliefs µ ∈ ∆(Ω) with µ(ω∗) > 0:30

Proposition 2. Fix any Ω = {ω1, ..., ωN} and β. Then there exists ε > 0 such that for any
β̂ with |β̂ − β| < ε, learning is successful at all states ω∗.

Note that δω∗ is a strict Berk-Nash equilibrium when β̂ = β. Thus, by Corollary 1, δω∗ is
locally stable under sufficiently small amounts of misspecification. More strongly, we show
that if |β̂ − β| is small enough, then ω∗ strictly KL-dominates all other states at all beliefs
µ ∈ ∆(Ω) and hence, by Theorem 3, δω∗ is globally stable in any state space Ω′ ⊆ Ω that
contains ω∗. Thus, successful learning is robust to small amounts of misspecification.

29Nyarko (1991) and Fudenberg, Romanyuk, and Strack (2017) study versions of this problem in binary
state spaces and show that all beliefs are unstable when the amount of misspecification is large. In our
setting, this can be established using the instability criterion in Theorem 1.

30This is slightly stronger than the requirement that δω∗ is globally stable at ω∗, which only considers
initial full-support beliefs.

23



6.2 Costly information acquisition

Next, we consider the costly information acquisition problem from Example 2 and derive
a stark failure of robustness when information is costly. Given any cost function C, we
index the agent’s precision choice γq̂(µ) given by (2) by the perceived base rate q̂. While (2)
assumes for simplicity that γ is chosen myopically, our results in this section generalize to
the case of a forward-looking agent who maximizes expected discounted payoffs.31 Assume
γ ∈ (0, 1) and q, q̂ ∈ (0, 1− γ), so that the true and perceived signal probabilities q+ γq̂(µ)ω

and q̂+γq̂(µ)ω are well-defined and nondegenerate for all µ and ω. To satisfy Assumption 1.3,
we also assume that γq̂(µ) is continuous in µ.32

As a benchmark, suppose first that the agent incurs the same constant cost C(γ) =

c regardless of her choice of precision, so that information is effectively costless. Then,
analogous to Proposition 2, learning is successful when the agent is correctly specified (q̂ = q)
and successful learning is robust to small amounts of misspecification:

Lemma 5. Suppose C is constant. For any q, there exists ε > 0 such that for any q̂ with
|q̂ − q| ≤ ε, learning is successful at all states ω∗.

Note that when information is costless, then for all q̂, the agent acquires the maximal
amount of information γq̂(µ) = γ at all mixed beliefs. This implies that when q̂ = q,
ω∗ strictly dominates all other states ω at all mixed beliefs, where the relative prediction
accuracy

∑
z Pµ(z)

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)p
< 1 is independent of µ. Given this, the same is true whenever

q̂ is sufficiently close to q, based on which we conclude that learning is successful.
Next, we contrast Lemma 5 with the case where information is costly, in the sense that

C is strictly increasing in γ. The key departure this introduces is the following:

Lemma 6. Suppose C is strictly increasing. For any q̂, limµ→δω γq̂(µ) = 0 for every ω.

That is, if information is (even slightly) costly, then the agent stops acquiring informa-
tion in the limit as she becomes confident in any particular state ω, because her value to
information vanishes as she becomes confident. In the language of Section 4, Lemma 6 shows
that costly information leads to NIP, since the agent’s perceived signal distribution satisfies

lim
µ→δω

P̂µ(z = 1|ω′) = lim
µ→δω

γq̂(µ)ω′ + q̂ = q̂, ∀ω, ω′.

31To see this, note that NIP/Lemma 6 remains valid with the same proof, as the continuation value
function is continuous in µ.

32Without continuity, the main result (Proposition 3) remains valid up to replacing the current assumption
(“successful learning at all states when q̂ = q”) with the following assumption: for any compact set K ⊆ ∆(Ω)
of mixed beliefs, infµ∈K γq̂(µ) > 0. This is slightly stronger than the current assumption, which is equivalent
to the requirement that γq̂(µ) > 0 for all mixed µ (Lemma 7). The robustness of costless learning (Lemma 5)
does not rely on continuity.
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Figure 2: Prediction accuracy ranking of ω1 vs. ω2 as a function of µ when ω∗ = ω1. Left-
hand side: q̂ = q. Right-hand side: q > q̂. Let DKL

µ (ω2, ω1) := KL
(
Pµ(·|ω∗), P̂µ(·|ω2)

)
−

KL
(
Pµ(·|ω∗), P̂µ(·|ω1)

)
.

As a result of NIP, the following proposition establishes that learning outcomes under
costly information are highly sensitive to small amounts of misspecification: Suppose learning
is successful whenever the agent is correctly specified (q̂ = q). Then, in sharp contrast with
Lemma 5, introducing arbitrarily small amounts of misspecification q̂ 6= q not only breaks
successful learning, but indeed renders the agent’s long-run belief independent of the true
state ω∗: If q̂ < q, then regardless of ω∗, she becomes confident in the highest possible state
ωN ; if q̂ > q, then regardless of ω∗, she becomes confident in the lowest possible state ω1.

Proposition 3. Suppose C is strictly increasing and for any q, q̂ with q = q̂, learning is
successful at all states ω∗. Then:

1. For any q, q̂ with q > q̂, δωN is globally stable at all states ω∗.

2. For any q, q̂ with q < q̂, δω1 is globally stable at all states ω∗.

To see the idea, suppose that Ω = {ω1, ω2} and the true state is ω1. For any q̂, the fact
that learning is successful at all states when q = q̂ means that γq̂(µ) > 0 for all mixed µ,
as otherwise the agent’s belief would get stuck at some initial mixed beliefs. At the same
time, by Lemma 6, γq̂(δω) = 0 at all point-mass beliefs. As a result, the prediction accuracy
ranking of ω1 vs. ω2 is sensitive to the relationship between q and q̂.

Specifically, as shown in Figure 2, when q = q̂, the true state ω1 strictly dominates ω2 at
all mixed beliefs, even though the gap in prediction accuracy vanishes as beliefs approach δω1

or δω2 .33 By contrast, if q > q̂, then the ranking is reversed near point-mass beliefs: Indeed,
since γ is very small near point-mass beliefs, the true probability γω1 + q of the high signal
exceeds the perceived probabilities γω2 + q̂, γω1 + q̂ in both states, but because ω2 > ω1,
the perceived probability in state ω2 comes closer to the truth. Intuitively, when signals are
very precise (γ is high), the true state always better explains the agent’s observations, but

33We use KL-dominance in Figure 2 for the sake of graphical illustration, but the proof of Proposition 3
is based on establishing p-dominance.
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when signals are sufficiently imprecise (γ is low), then overestimating the state can partly
compensate for the fact that the agent underestimates the base rate of the high signal.
Finally, by Remark 2, the fact that ω2 strictly dominates ω1 near both point-mass beliefs
and that signals are FOSD-increasing in states means that Theorem 4 applies up to relabeling
states in decreasing order. Thus, when q > q̂, δω2 is globally stable.

Finally, to understand when Proposition 3 applies, we clarify which cost functions lead to
successful learning when the agent is correctly specified. To state this, we slightly strengthen
the requirement that the utility v : ∆(Ω) → R is strictly convex by imposing additional
regularity assumptions:

Lemma 7. Suppose v is twice continuously differentiable and admits a positive-definite Hes-
sian. Fix any q̂. For any twice continuously differentiable cost function C with C ′(0) =

C ′′(0) = 0, we have
γq̂(µ) > 0 for all mixed µ. (9)

Moreover, (9) is necessary and sufficient for learning to be successful at all ω∗ when q = q̂.

Lemma 7 provides “Inada” conditions on C which ensure that small amounts of infor-
mation are very cheap, so that the agent remains willing to acquire a positive amount of
information whenever she is not completely certain about the state. These conditions are
satisfied, for example, by any power function C(γ) = γd with d > 2.34

Remark 3. We comment on two features of the present setting:
Persistence of misspecification. As in several misspecified learning environments in the

literature, the true long-run signal distribution disagrees with the agent’s perceived long-
run distribution whenever q̂ 6= q, suggesting that (asymptotically) the agent might come to
realize that she is misspecified.35 However, this feature is not essential to the present fragility
result: For example, an analog of Proposition 3 can be obtained if the agent is correct about
the base rate q but (even slightly) misperceives the sensitivity of the signal distribution to the
precision choice γ; in this case the true and perceived long-run signal distributions exactly
coincide (by NIP), suggesting that such misspecification might persist.

34The restriction C ′′(0) = 0 on the second derivative is related to the Radner-Stiglitz non-concavity in the
value of information (Chade and Schlee, 2002). Since the agent’s marginal value of information is zero at
γ = 0, the restriction C ′(0) = 0 on the first derivative is not enough to ensure a positive choice of γ. As is
well-known, the Radner-Stiglitz non-concavity does not arise in Gaussian environments. In such settings, we
can show (details available upon request) that C ′(0) = 0 is sufficient to guarantee that learning is successful
under correct specification, while the analog of Proposition 3 continues to hold. In the context of voting
with costly information acquisition (but unrelated to the Radner-Stiglitz non-concavity), Martinelli (2006)
also imposes the condition C ′(0) = C ′′(0) = 0 to show that information aggregation obtains.

35However, see Gagnon-Bartsch, Rabin, and Schwartzstein (2018) for an inattention-based rationale for
the persistence of such misspecification.
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Approximate NIP. Various forces might break NIP in the present setting, for example, if
the agent additionally receives some exogenous costless information each period. However,
for any q̂ 6= q, the predictions of Proposition 3 remain valid as long as the amount of
exogenous information is sufficiently small.36 Thus, for a given amount of misspecification,
learning outcomes under NIP offer a good approximation as long as the predominant source
of information is costly rather than costless. N

6.3 Sequential social learning

Finally, we analyze the sequential social learning environment from Example 3. We impose
the following assumptions: Private signals st are drawn i.i.d. across agents conditional on each
state ω, according to a positive and continuous density φ(·|ω) that satisfies the monotone
likelihood ratio property; i.e., φ(s|ω)

φ(s|ω′) is strictly increasing in s for any ω > ω′. True and
perceived type distributions F and F̂ admit positive densities, and the utility difference
v(θ, ω) := u(1, θ, ω)−u(0, θ, ω) between actions is strictly increasing and continuous in types
and states (θ, ω), with limθ→−∞ v(θ, ω) < 0 and limθ→+∞ v(θ, ω) > 0; thus, sufficiently low
(risk-averse) types always prefer action 0 (not adopt) and sufficiently high (risk-tolerant)
types always prefer action 1 (adopt).

Recall from Remark 1 that at each public belief µ, the true and perceived probabilities
that the current-period action is 0 satisfy

Pµ(0|ω∗) =

ˆ
F (θ∗(µs))φ(s|ω∗) ds, P̂µ(0|ω) =

ˆ
F̂ (θ∗(µs))φ(s|ω) ds,

where µs ∈ ∆(Ω) denotes the Bayesian update of µ following private signal realization s and
for each ν ∈ ∆(Ω), θ∗(ν) denotes the type who is indifferent between action 0 and 1 at belief
ν. Note that θ∗(ν) exists and is unique by the above assumptions. We write θ∗ω := θ∗(δω)

and θ∗i := θ∗ωi .
We first note that when agents are correctly specified, learning is successful:

Lemma 8. Suppose that F̂ = F . Then learning is successful at all states ω∗.

An analogous result is established by Goeree, Palfrey, and Rogers (2006). Observe that
herding is ruled out due to the rich preference heterogeneity of the present setting (in par-
ticular, the existence of dominant types), despite the fact that private signals need not have
unbounded precision.

36For example, suppose true and perceived probabilities are (γ(µ) + α)ω∗ + q, (γ(µ) + α)ω + q̂ for some
exogenous α > 0. Then for any q̂ < q, there exists ε > 0 such that δωN is globally stable at all ω∗ whenever
α < ε; and likewise for q̂ > q.

27



However, we observe next that sequential social learning leads to NIP:

Lemma 9. For all F̂ , ω, and ω′, we have

lim
µ→δω

ˆ
F̂ (θ∗(µs))φ(s|ω′) ds = F̂ (θ∗ω).

Lemma 9 shows that as the public belief becomes confident in any given state ω, the
perceived probability of observing action 0, limµ→δω P̂µ(0|ω′) = F̂ (θ∗ω), is the same in all
states ω′; that is, NIP holds. The logic is based on the following well-known feature of
social learning that is sometimes referred to as the “self-correcting property” (Vives, 1993):
The more indicative an agent perceives previous actions to be of a particular state ω, the
less heavily she weights her own private signal s in choosing her action, and in the limit as
previous actions become perfectly indicative of ω, she disregards s and acts solely based on
the public belief δω.

Similar to costly information acquisition, NIP again leads successful learning to be highly
non-robust to the introduction of misspecification. The following result classifies possible
learning outcomes depending on the nature of misspecification:

Proposition 4. Fix any F and F̂ . In each state ω∗:

1. δωN is globally stable if F >FOSD F̂ ,37 locally stable if F (θ∗N) < F̂ (θ∗N), and unstable if
F (θ∗N) > F̂ (θ∗N).

2. δω1 is globally stable if F̂ >FOSD F , locally stable if F (θ∗1) > F̂ (θ∗1), and unstable if
F (θ∗1) < F̂ (θ∗1).

3. For each n ∈ {2, ..., N − 1}, δωn is unstable if F (θ∗n) 6= F̂ (θ∗n).

Proposition 4 highlights three general possibilities. First, beliefs might converge globally
to a point-mass on the highest possible state ωN (resp. lowest possible state ω1). Similar
to Proposition 3, this occurs if agents systematically underestimate (resp. overestimate) the
type distribution (e.g., extent of risk tolerance in the population), no matter how close F̂
is to F under any standard notion of distance and regardless of the true state ω∗. Second,
the extreme beliefs δω1 and/or δωN might be locally stable, if agents overestimate the share
of very high types (above θ∗1) and/or of very low types (below θ∗N). Finally, if agents un-
derestimate both the shares of very high types and of very low types (i.e., underestimate
type heterogeneity), then generically (except when F (θ∗i ) = F̂ (θ∗i ) for some i) all point-mass
beliefs are unstable, so that beliefs cycle.38

37We write F >FOSD F̂ if F (θ) < F̂ (θ) for all θ.
38As in the correctly specified case, mixed beliefs are unstable, since the richness of types implies the

identification condition in Lemma 1.
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To see the idea, consider any state ωi. If F (θ∗i ) < F̂ (θ∗i ), then NIP (Lemma 9) implies
that at all states ω and all public beliefs µ close to the point-mass belief δωi , the per-
ceived probability of action 0, P̂µ(0|ω) ≈ F̂ (θ∗i ), is strictly higher than the actual probability
Pµ(0|ω∗) ≈ F (θ∗i ). At the same time, by the assumptions on signals and utilities, P̂µ(0|ω)

is strictly decreasing in ω at all mixed µ. Thus, at all mixed µ close to δωi , the perceived
action distribution comes closest to the actual one at the highest state ωN . Analogously, if
F (θ∗i ) > F̂ (θ∗i ), then the lowest state ω1 dominates all other states near δωi . Based on this,
the local stability and instability results follow from Theorems 1 and 2, while Theorem 4
implies the global stability results.

Analogous to Remark 3, we note that when F̂ 6= F , the true long-run action distribution
disagrees with agents’ perceived distribution, but this feature is not essential to our result:
For instance, an analog of Proposition 4 can be obtained when agents are correct about F
but misperceive the private signal distribution φ, and in this case true and perceived long-run
action distributions coincide.

Remark 4. We briefly contrast Proposition 4 with other recent findings in the literature:
In closely related sequential social learning environments, Bohren (2016) and Bohren and

Hauser (2018) show that successful information aggregation is robust to small amounts of
misspecification. A key difference relative to our setting is their assumption that either (i)
agents observe an informative public signal every period, or (ii) a positive fraction of agents
(so-called “autarky types”) choose actions based solely on their own private signal. This
assumption rules out NIP, because it leads the perceived action distribution P̂µ(·|ω) to be
informative about the state (i.e., to depend on ω) even when µ is a point-mass. However, for
a given misspecification, we note (analogous to Remark 3) that the predictions we obtained
under NIP remain valid as long as the public signal in (i) is sufficiently uninformative or the
fraction of autarky types in (ii) is sufficiently small.

Gagnon-Bartsch (2017) considers a sequential social learning model with “taste projec-
tion” and shows that a point-mass on the true state can be unstable under arbitrarily small
amounts of misspecification. His environment can be seen to feature NIP. However, due to
the difference in the nature of misspecification, his setting requires a large amount of misspec-
ification in order for a point-mass on an incorrect state to be locally/globally stable, whereas
we show that this can happen even under arbitrarily small amounts of misspecification.

Finally, Frick, Iijima, and Ishii (2019) (FII2019) study a different social learning model,
where a continuum of agents each privately observe the action of a random other agent each
period. Their setting is not nested by the present framework, as there is no public belief.
They also highlight that vanishingly small amounts of misspecification about the type distri-
bution F can lead beliefs to converge to a state-independent point-mass, but both the logic
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and nature of this fragility result are somewhat different. Specifically, the current setting and
FII2019 have in common that for any F and F̂ , the set of equilibrium beliefs is “decoupled,”
in the sense that this set does not depend on the true state ω∗. However, in the current
setting, NIP implies that for any F and F̂ , this set consists of all point-mass beliefs, and the
logic behind Proposition 4 is that misspecification can discontinuously change which of these
beliefs are stable. By contrast, Theorem 1 in FII2019 highlights a discontinuity at the level of
the equilibrium correspondence, by showing that misspecification can discontinuously shrink
the set of equilibria to a single point-mass belief. The key difference is that the environment
in FII2019 does not feature NIP, because in their private observation setting, agents view
new action observations as informative, no matter how convinced they themselves have be-
come in a particular state.39 Importantly, in contrast with Proposition 4, the discontinuity
of the equilibrium correspondence in FII2019 relies on a continuous state space, and they
show that in finite state spaces, successful learning is robust. N

7 Concluding remarks

This paper presents an approach to analyze learning outcomes in a broad class of misspecified
environments, including single-agent and social learning. Our main results provide local and
global stability criteria for long-run beliefs, using a prediction accuracy order over subjective
models—p-dominance—that refines comparisons based on Kullback-Leibler divergence. Our
approach makes it possible to analyze a natural class of environments, where arbitrarily
small amounts of misspecification can significantly alter learning outcomes, because agents’
behavior near point-mass beliefs generates increasingly uninformative new signals. We also
apply our criteria to unify and generalize various convergence results in previously studied
settings.

In Appendix G, we extend the main model and results to a setting with profiles of
beliefs, which makes it possible to accommodate additional classes of environments. This
includes learning in games (e.g., Fudenberg and Kreps, 1993; Esponda and Pouzo, 2016),
where players repeatedly choose actions, observe signals about an underlying fundamental
and others’ actions, and update their beliefs under the assumption that others’ behavior is
time-stationary and other possible misspecifications about the environment. This setting can
also accommodate social learning environments with heterogeneous misspecifications (e.g.,
Bohren and Hauser, 2018; Gagnon-Bartsch, 2017).

39To see this, note that agents believe that information aggregation is successful in the long run. Thus, no
matter her own current belief, an agent expects that in each state ω′, the long-run probability of observing
action 0 approximates F̂ (θ∗ω′) and hence is informative of the state, in contrast with Lemma 9.
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In ongoing work, we pursue extensions of our results to infinite state space settings as
well as Markov decision problems. Finally, while we have maintained the assumption that
agents are Bayesian (as is standard in the misspecified learning literature), our approach can
also be applied to more general models of learning in which the belief µt ∈ ∆(Ω) follows some
Markov process. For instance, for local stability, this entails suitably modifying condition
(6) in Theorem 1 to ensure that the process

(
µt(ω′)
µt(ω)

)p
is again a nonnegative supermartingale

up to some stopping time.

Appendix: Main Proofs

A Preliminaries

We first show that Assumption 1 implies continuity with respect to µ of the expressions used
to define KL-dominance and p-dominance:

Lemma 10. For each p > 0 and ω, ω′ ∈ Ω,
∑

z Pµ(z) log
(
P̂µ(z|ω)

P̂µ(z|ω′)

)
and

∑
z Pµ(z)

(
P̂µ(z|ω)

P̂µ(z|ω′)

)p
are continuous in µ.

Proof. Let M := supµ∈∆(Ω),z∈suppPµ
P̂µ(z|ω)

P̂µ(z|ω′) , which is finite by the second condition in As-
sumption 1. Take any ω, ω′ ∈ Ω, µ ∈ ∆(Ω), and any convergent sequence of beliefs µn → µ.
By the triangle inequality,∣∣∣∣∣∑

z

Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω′)

)
−
∑
z

Pµn(z) log

(
P̂µn(z|ω)

P̂µn(z|ω′)

)∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

z∈supp(Pµ)

(
Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω′)

)
− Pµn(z) log

(
P̂µn(z|ω)

P̂µn(z|ω′)

))∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

z 6∈supp(Pµ)

Pµn(z) log

(
P̂µn(z|ω)

P̂µn(z|ω′)

)∣∣∣∣∣∣ .
On the right-hand side of the inequality, as n→ 0, the first term goes to zero since for each
z ∈ supp(Pµ), we have Pµn(z) → Pµ(z) > 0, P̂µn(z|ω) → P̂µ(z|ω) > 0, and P̂µn(z|ω′) →
P̂µ(z|ω′) > 0 by the first and third conditions in Assumption 1. Likewise, the second term
goes to zero since | log

(
P̂µn (z|ω)

P̂µn (z|ω′)

)
| ≤M for each n by choice ofM and

∑
z 6∈supp(Pµ) Pµn(z)→ 0

by the third condition in Assumption 1. Thus,
∑

z Pµ(z) log
(
P̂µ(z|ω)

P̂µ(z|ω′)

)
is continuous at µ.

The argument for continuity of
∑

z Pµ(z)
(
P̂µ(z|ω)

P̂µ(z|ω′)

)p
is analogous.
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The following result shows that mixed beliefs are unstable under an identification condi-
tion. The argument is similar to Theorem B.1 in Smith and Sørensen (2000):

Lemma 11. Take any compact set K ⊆ ∆(Ω). Suppose there exist ω, ω′ such that for each
µ ∈ K, we have (i) µ(ω), µ(ω′) > 0 and (ii) P̂µ(z|ω) 6= P̂µ(z|ω′) for some z ∈ supp(Pµ).
Then for any initial belief µ0, Pµ0 [∃τ <∞ s.t. µt ∈ K ∀t ≥ τ, and ∃ limt

µt(ω)
µt(ω′)

] = 0.

Proof. For each µ ∈ K, (ii) yields some zµ ∈ Z such that Pµ(zµ) > 0 and
∣∣∣log P̂µ(zµ|ω)

P̂µ(zµ|ω′)

∣∣∣ > 0.

By (i) and continuity of P and P̂ with respect to µ, there is a neighborhood Bµ of µ with

inf
µ′∈Bµ

min

{
Pµ′(zµ),

∣∣∣∣∣log
P̂µ′(zµ|ω)

P̂µ′(zµ|ω′)

∣∣∣∣∣ , µ′(ω), µ′(ω′)

}
> 0.

By compactness of K, there is a finite subcover (Bµi)
n
i=1 of K. Let

γ := inf
i=1,...,n,
µ′∈Bµi

min

{
Pµ′(zµi),

∣∣∣∣∣log
P̂µ′(zµi |ω)

P̂µ′(zµi|ω′)

∣∣∣∣∣
}
.

By construction, γ > 0.
Suppose for a contradiction that Pµ0 [∃τ < ∞ s.t. µt ∈ K ∀t ≥ τ, and ∃ limt

µt(ω)
µt(ω′)

] > 0

for some initial belief µ0. Since the belief process is Markov, there exists an initial belief µ0 ∈
K such that Pµ0 [µt ∈ K ∀t, and ∃ limt

µt(ω)
µt(ω′)

] > 0. Given this µ0, take ` from the support of
the distribution of limt

µt(ω)
µt(ω′)

conditional on the event {µt ∈ K ∀t, and ∃ limt
µt(ω)
µt(ω′)

}. Then

Pµ0

[
µt ∈ K ∀t and ∃T <∞ s.t.

∣∣∣∣log
µt(ω)

µt(ω′)
− `
∣∣∣∣ ≤ γ/2 ∀t ≥ T

]
> 0. (10)

But for any t, conditional on the event that µt ∈ K and
∣∣∣log µt(ω)

µt(ω′)
− `
∣∣∣ ≤ γ/2, there is

probability at least γ > 0 that
∣∣∣log µt+1(ω)

µt+1(ω′)
− `
∣∣∣ > γ/2. This is because there exists some

i such that µt ∈ Bµi , so that zt = zµi realizes with probability at least γ > 0. Since the
process is Markov, this implies that the event considered in (10) occurs with zero probability,
a contradiction.

The following result shows that δω is globally stable whenever ω strictly p-dominates all
other states at all mixed beliefs, but may be tied at point-mass beliefs:

Proposition 5. Consider any ω ∈ Ω. Suppose that for some p > 0, we have ω %p
µ ω
′ for all

ω′ 6= ω and all µ, with strict dominance for all mixed µ. Then δω is globally stable.
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Proof. Fix any initial belief µ0 and consider the induced probability measure Pµ0 over se-
quences of beliefs. For each ω′ 6= ω, `t(ω′) :=

(
µt(ω′)
µt(ω)

)p
is a non-negative supermartingale,

since ω %p
µ ω

′ for all µ. Thus, by Doob’s convergence theorem, there exists an L∞ random
variable `∞(ω′) such that `t(ω′) → `∞(ω′) ≥ 0 almost surely. Hence, the belief process µt
converges almost surely. Let µ∞ denote the limit. Suppose for a contradiction that µ∞ 6= δω

with positive probability, which implies that for some ω′ 6= ω, `∞(ω′) > 0 with positive prob-
ability. Then there exists a compact set K ⊆ ∆(Ω) with µ(ω), µ(ω′) > 0 for each µ ∈ K such
that Pµ0 [∃τ s.t. µt ∈ K ∀t ≥ τ and ∃ limt

µt(ω′)
µt(ω)

] > 0. But for each µ ∈ K, we have ω �pµ ω′,
which implies that P̂µ(z|ω) > P̂µ(z|ω′) for some z ∈ suppPµ. This yields a contradiction
with Lemma 11.

A corollary of Proposition 5 is that if the true signal distribution coincides with the
perceived signal distribution at some state ω∗ (i.e., the environment is correctly specified),
then δω∗ is globally stable under an appropriate identification condition at mixed beliefs:

Corollary 2. Suppose there exists ω∗ ∈ Ω such that (i) Pµ(·) = P̂µ(·|ω∗) for all µ ∈ ∆(Ω),
and (ii) P̂µ(·|ω∗) 6= P̂µ(·|ω) for all ω 6= ω∗ and all mixed µ. Then δω∗ is globally stable.

Proof. Take any p ∈ (0, 1) and ω 6= ω∗. For each belief µ, we have

∑
z∈suppPµ

Pµ(z)

(
P̂µ(z|ω)

Pµ(z)

)p

≤

 ∑
z∈suppPµ

P̂µ(z|ω)

p

≤ 1, (11)

where the first inequality holds by Jensen’s inequality applied to the concave function f(x) =

xp. Since Pµ(·) = P̂µ(·|ω∗) by (i), this shows that ω∗ %p
µ ω. Consider any mixed µ. By

Assumption 1, suppPµ ⊆ suppP̂µ(·|ω). If suppPµ ( suppP̂µ(·|ω), then the second inequality
in (11) is strict. If suppPµ = suppP̂µ(·|ω), then by (ii), P̂µ(z|ω)

Pµ(z)
6= P̂µ(z′|ω)

Pµ(z′)
for some z, z′ ∈

suppPµ, in which case the first inequality in (11) is strict. In either case, ω∗ �pµ ω. Thus,
the conclusion follows from Proposition 5.

B Proofs for Sections 3 and 4

B.1 Proof of Lemma 1

By assumption, there exist ω, ω′ ∈ suppµ and z∗ ∈ suppPµ(·) such that P̂µ(z∗|ω)

P̂µ(z∗|ω′) 6= 1. By

continuity of P and P̂ with respect to µ, there exists γ > 0 such that
∣∣∣log

P̂µ′ (z
∗|ω)

P̂µ′ (z
∗|ω′)

∣∣∣ , Pµ′(z∗) >
γ for all µ′ with ‖µ′−µ‖ < γ. Take ε > 0 sufficiently small so that

∣∣∣log µ′(ω)
µ′(ω′)

− log µ(ω)
µ(ω′)

∣∣∣ ≤ γ,
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for all µ′ ∈ B, where B denotes the ε-ball around µ. Conditional on µt ∈ B, the realization
of zt = z∗, which occurs with probability at least γ > 0, implies µt+1 6∈ B. Since the process
is Markov, we have Pµ0 [µt ∈ B∀t] = 0 from any initial belief µ0 ∈ B. Hence, µ is unstable.

B.2 Proof of Lemma 2

Suppose δω is not a Berk-Nash equilibrium. Then there exists ω′ 6= ω such that ω′ �δω ω,
whence by part 3 of Lemma 3, ω′ �µ ω holds for all µ in a sufficiently small neighborhood
B 3 δω. Hence, δω is unstable by Theorem 2.

B.3 Proof of Lemma 3

Consider the random variable log P̂µ(z|ω′)
P̂µ(z|ω)

, where z is distributed according to Pµ. LetM(p) :=∑
z Pµ(z)

(
P̂µ(z|ω′)
P̂µ(z|ω)

)p
denote its moment-generating function evaluated at p ∈ R. Note that

M is convex with M(0) = 1 and M ′(0) =
∑

z Pµ(z) log P̂µ(z|ω′)
P̂µ(z|ω)

.
Part 1. If ω �pµ ω′ for some p > 0, then M(p) < 1 = M(0). Thus, convexity of M

implies for all q ∈ (0, p) that M(q) ≤ q
p
M(p) + (1− q

p
)M(0) < 1, i.e., ω �qµ ω′. By convexity

of M , we also have M ′(0) ≤ 1
p
(M(p)−M(0)) < 0, whence ω �µ ω′.

Part 2. If ω �µ ω′, then M ′(0) < 0. Thus, for all sufficiently small p > 0, continuity of
M ′ implies M(p) < M(0) = 1, i.e., ω �pµ ω′.

Part 3. Immediate from Lemma 10.

B.4 Proof of Theorem 1

Suppose there exist p > 0 and B 3 δω such that (6) holds. For any initial belief µ0 with
induced probability measure Pµ0 over sequences of beliefs and each ω′ 6= ω, define the
stochastic process `t(ω′) :=

(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)p
, where τ := inf{t′ : µt′ 6∈ B}. By (6), each `t(ω′)

is a nonnegative supermartingale. Thus, there exists an L∞-random variable `∞(ω′) such
that `t(ω′)→ `∞(ω′) occurs almost surely.

To prove that δω is locally stable, it suffices to show the following two claims:

Claim 1: For any initial belief µ0, Pµ0 [µt ∈ B ∀t and µt → δω] = Pµ0 [µt ∈ B ∀t].

Proof of Claim 1. Consider any initial belief µ0 such that Pµ0 [µt ∈ B, ∀t] > 0. We show that
Pµ0 [µt → δω|µt ∈ B ∀t] = 1. Conditional on the event {µt ∈ B, ∀t}, we have {τ = ∞}, so
that the fact that `t(ω′) → `∞(ω′) almost surely implies that each µt(ω′)

µt(ω)
converges almost

surely to a finite value. Suppose for a contradiction that for some ω′ 6= ω, Pµ0 [limt
µt(ω′)
µt(ω)

> 0 |
τ =∞] > 0. Then there exists a compactK ⊆ B such that µ(ω′), µ(ω) > 0 for all µ ∈ K and
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Pµ0 [∃T s.t. µt ∈ K∀t ≥ T and ∃ limt
µt(ω′)
µt(ω)

| τ = ∞] > 0. But this contradicts Lemma 11,
because for any µ ∈ B \ {δω}, (6) yields some z ∈ suppPµ with P̂µ(z|ω) 6= P̂µ(z|ω′). Hence,
we have Pµ0 [limt

µt(ω′)
µt(ω)

= 0 | τ =∞] = 1 for all ω′ 6= ω. Thus, Pµ0 [µt → δω | τ =∞] = 1, as
claimed.

Claim 2: For any γ > 0, there exists a neighborhood B′ ⊆ B of δω such that Pµ0 [µt ∈
B , ∀t] ≥ γ for any µ0 ∈ B′.

Proof of Claim 2. Fix any γ > 0. Pick ε+ ∈ (0, 1 − γ) such that {µ ∈ ∆(Ω) :
(
µ(ω′)
µ(ω)

)p
<

ε+,∀ω′ 6= ω} ⊆ B. Pick ε− ∈ (0, ε+) such that (|Ω| − 1) ε−
ε+
≤ 1− γ.

For any initial belief µ0 ∈ B′ := {µ ∈ ∆(Ω) :
(
µ(ω′)
µ(ω)

)p
< ε−,∀ω′ 6= ω} ⊆ B, we have

Pµ0 [∃t, µt 6∈ B] ≤ Pµ0 [∃ω′, `∞(ω′) ≥ ε+] ≤
∑
ω′ 6=ω

Pµ0 [`∞(ω′) ≥ ε+]

≤
∑
ω′ 6=ω

Eµ0 [`∞(ω′)]/ε+ ≤ (|Ω| − 1)
ε−
ε+

,

where the third inequality uses Markov’s inequality and the fourth inequality follows from
Fatou’s lemma and the fact that each `t(ω

′) is a nonnegative supermartingale. Thus, we
have Pµ0 [µt ∈ B, ∀t] ≥ γ, as required.

B.5 Proof of Theorem 2

Suppose there exists a neighborhood B 3 δω such that (8) holds for some ω′ 6= ω. Up to
restricting to a subneighborhood of B, we can assume that there exists some ε > 0 such that
µ(ω) > ε for all µ ∈ B. Fix any initial belief µ0 ∈ B \ {δω} and induced probability measure
Pµ0 over sequences of beliefs. Let τ := min{t : µt 6∈ B}. To prove instability of δω, it suffices
to show that Pµ0 [τ <∞] = 1. Consider the process `t := log

(
µmin{t,τ}(ω)

µmin{t,τ}(ω′)

)
. (8) implies that

`t is a supermartingale. Moreover it is bounded from below, since `t ≥ log ε
1−ε− logM for all

t, whereM is taken from the second part of Assumption 1. Thus there exists an L∞-random
variable `∞ such that `t → `∞ almost surely.

Suppose for a contradiction that with positive probability, we have τ =∞. Conditional
on τ = ∞, we have log

(
µt(ω)
µt(ω′)

)
= `t for all t. Thus, conditional on τ = ∞, µt(ω)

µt(ω′)
converges

almost surely to an L∞ random limit limt
µt(ω)
µt(ω′)

, which must be strictly positive since µ(ω) > ε

for all µ ∈ B. Hence, there exists some compact set K ⊆ B \ {δω} such that µ(ω), µ(ω′) > 0

for all µ ∈ K and Pµ0 [∃T s.t. µt ∈ K∀t ≥ T and ∃ limt
µt(ω)
µt(ω′)

| τ = ∞] > 0. But this
contradicts Lemma 11, because (8) implies that for each µ ∈ K, there exists z ∈ suppPµ

with P̂µ(zµ|ω) 6= P̂µ(zµ|ω′). Hence, Pµ0 [τ <∞] = 1, as required.
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B.6 Proof of Corollary 1

We first note that if δω is a strict Berk-Nash equilibrium in environment (P, P̂ ), then δω is
locally stable at (P, P̂ ). Indeed, since ω �δω ω′ for all ω′ 6= ω, the second part of Lemma 3
yields some p > 0 such that ω �pδω ω

′ for all ω′ 6= ω. Hence, by the third part of Lemma 3,
there exists a neighborhood B 3 δω such that ω �pµ ω′ holds for all µ ∈ B. Thus, δω is locally
stable by Theorem 1.

Since this holds for any environment (P, P̂ ), to prove Corollary 1, it suffices to show that
if δω is a strict Berk-Nash equilibrium at (P, P̂ ), i.e.,

∑
z

Pδω(z) log
P̂δω(z|ω′)
P̂δω(z|ω)

< 0 for all ω′ 6= ω,

then there exists ε > 0 such that δω remains a strict Berk-Nash equilibrium at any ε-
perturbation (Q, Q̂) of (P, P̂ ), i.e.,

∑
z

Qδω(z) log
Q̂δω(z|ω′)
Q̂δω(z|ω)

< 0 for all ω′ 6= ω.

But this is immediate from the observation that (i) if KL(Qδω(·), Pδω(·)) <∞, then suppQδω ⊆
suppPδω ; and (ii) if KL(Qδω(·), Pδω(·)), supω′′ KL(Q̂δω(·|ω′′), P̂δω(·|ω′′)) < ε, then supz |Pδω(z)−
Qδω(z)|, supz,ω′′ |P̂δω(z|ω′′)− Q̂δω(z|ω′)| <

√
ε/2 by Pinsker’s inequality.

C Proofs for Section 5

C.1 Proof of Theorem 3

Since Ω is finite, S∞(Ω) = Sn(Ω) for some n. Let Sk := Sk(Ω) for each k. For each
k = 1, . . . , n and ωk ∈ Sk−1 \ Sk, we can pick a state ωk ∈ Sk−1 such that ωk �µ ωk for all
µ ∈ ∆(Sk−1). Thus, by Lemma 3 and Lemma 10, for each such ωk and µ ∈ ∆(Sk−1), there
exist pωk,µ > 0 and a closed ball D(µ;ωk) around µ such that

max
µ∈D(µ;ωk)

∑
z

Pµ(z)

(
P̂µ(z|ωk)
P̂µ(z|ωk)

)pωk,µ

< 1.
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For each such ωk, there is a finite collection {D(µi;ωk)|i = 1, ...,mωk} that covers the compact
set ∆(Sk−1). Thus, there exists p > 0 such that for each k = 1, . . . , n and ωk ∈ Sk−1 \ Sk,

max
µ∈∆(Sk−1)

∑
z

Pµ(z)

(
P̂µ(z|ωk)
P̂µ(z|ωk)

)p

< 1. (12)

To show that ∆(Sn) is globally stable, it suffices to show that

Pµ0

[
µt(ωk)

µt(ωk)
→ 0 ∀ωk ∈ Sk−1 \ Sk

]
= 1 (13)

for each k = 1, . . . , n and initial belief µ0. We prove this by induction on k.
First consider the case k = 1. Take any ω1 ∈ Ω \ S1(Ω) and initial belief µ0. By (12),

the process `t(ω1) :=
(
µt(ω1)
µt(ω1)

)p
is a non-negative supermartingale. Thus, there exists an L∞-

random variable `∞(ω1) such that `t(ω1)→ `∞(ω1) almost surely. Suppose for a contradiction
that Pµ0 [limt→∞

µt(ω1)
µt(ω1)

> 0] > 0. Then there exists a compact set K ⊆ ∆(Ω) such that
µ(ω1), µ(ω1) > 0 for all µ ∈ K and Pµ0 [∃T s.t. µt ∈ K∀t ≥ T and ∃ limt→∞

µt(ω1)
µt(ω1)

] > 0.
This contradicts Lemma 11, because by (12), for any mixed µ, there exists z ∈ suppPµ with
P̂µ(z|ω1) 6= P̂µ(z|ω1). Hence, Pµ0 [µt(ω1)

µt(ω1)
→ 0] = 1, as claimed.

Next, suppose that (13) holds for all k = 1, . . . , κ − 1 and consider the case k = κ. For
some ε > 0, define

Bκ := {µ ∈ ∆◦(Ω) :
κ−1∑
j=1

∑
ωj∈Sj−1\Sj

(
µ(ωj)

µ(ωj)

)p
≤ ε}.

Note that Bκ converges to ∆(Sκ−1) in the Hausdorff distance as ε → 0. Thus, by (12),
Lemma 10, and the fact that ∆(Sκ−1) ⊆ ∆(Sj−1) for all j ≤ κ, we can choose ε sufficiently
small that

max
µ∈cl(Bκ)

∑
z

Pµ(z)

(
P̂µ(z|ωj)
P̂µ(z|ωj)

)p

< 1 (14)

for all j = 1, . . . , κ and ωj ∈ Sj−1 \ Sj.
Let τ := min{t ≥ 0 : µt 6∈ Bκ}. The inductive hypothesis implies that

Pµ0 [∃t s.t. µt ∈ Bκ] = 1 (15)

for any initial belief µ0. Given this, it suffices to show40 that there exists γ > 0 such that

40To see this, suppose (16) and (17) hold and let φ(µ) := Pµ
[
µt(ωκ)
µt(ωκ) → 0 ∀ωκ ∈ Sκ−1 \ Sκ

]
for each initial

belief µ ∈ ∆◦(Ω). Then for any initial belief µ 6∈ Bκ, φ(µ) ≥ infµ′∈Bκ φ(µ′) by (15) and the Markov property.
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for any initial belief µ0 ∈ Bκ, we have

Pµ0 [τ =∞] ≥ γ (16)

Pµ0

[
µt(ωκ)

µt(ωκ)
→ 0 ∀ωκ ∈ Sκ−1 \ Sκ|τ =∞

]
= 1. (17)

To verify (16), consider

`κt :=
κ∑
j=1

∑
ωj∈Sj−1\Sj

(
µmin{τ,t}(ωj)

µmin{τ,t}(ωj)

)p
,

which is a nonnegative supermartingale by (14). Thus, there is an L∞-random variable `κ∞
such that `κt → `κ∞ almost surely. Moreover, there exists γ ∈ (0, 1) such that for any initial
belief µ0 ∈ Bκ, we have

Eµ0 [`κ1/`
κ
0 ] ≤ max

j=1,...,κ
ωj∈Sj−1\Sj

Eµ0

[(
µ1(ωj)

µ1(ω̄j)

)p
/

(
µ0(ωj)

µ0(ω̄j)

)p]
=

max
j=1,...,κ

ωj∈Sj−1\Sj

∑
z

Pµ0(z)

(
P̂µ0(z|ωj)
P̂µ0(z|ω̄j)

)p

≤ 1− γ,
(18)

where the last inequality holds by (14). Hence, for any initial belief µ0 ∈ Bκ

Pµ0 [τ <∞] ≤ Pµ0 [`κ∞ ≥ ε] ≤ Eµ0 [`κ∞]/ε ≤ Eµ0 [`κ1 ]/ε ≤ (1− γ)
`κ0
ε
≤ 1− γ,

where the second inequality uses Markov inequality, the third inequality uses Fatou lemma
and the fact that `κt is a non-negative supermartingale, and the fourth inequality uses (18).
This verifies (16).

Finally, to verify (17), take any ωκ ∈ Sκ−1 \ Sκ and initial belief µ0 ∈ Bκ. By (14),
`t(ωκ) :=

(
µmin{t,τ}(ωκ)

µmin{t,τ}(ωκ)

)p
is a nonnegative supermartingale. Thus, there is an L∞-random

variable `∞(ωκ) such that `t(ωκ) → `∞(ωκ) almost surely. Hence, conditional on the event
τ = ∞, µt(ωκ)

µt(ωκ)
converges to a finite value almost surely. Suppose for a contradiction that

Pµ0 [lim µt(ωκ)
µt(ωκ)

> 0 | τ = ∞] > 0. Then there exists a compact set K ⊆ ∆(Ω) such that
µ(ωk), µ(ωk) > 0 for all µ ∈ K and Pµ0 [∃T s.t. µt ∈ K∀t ≥ T and ∃ limt→∞

µt(ω1)
µt(ω1)

| τ =

Moreover, for any initial belief µ ∈ Bκ,

φ(µ) ≥ Pµ[τ =∞] + Pµ[τ <∞] inf
µ′∈Bκ

φ(µ′) ≥ γ + (1− γ) inf
µ′∈Bκ

φ(µ′)

where the first equality uses (17) and the second uses (16). Thus, infµ6∈Bκ φ(µ) ≥ infµ′∈Bκ φ(µ′) = 1, as
required.
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∞] > 0. This contradicts Lemma 11, because by (14), for any mixed µ ∈ Bκ, there exists
z ∈ suppPµ with P̂µ(z|ωκ) 6= P̂µ(z|ωκ). Hence, Pµ0 [µt(ωκ)

µt(ωκ)
→ 0 | τ =∞] = 1, proving (17).

C.2 Proof of Lemma 4

We say that a set of beliefs K ⊆ ∆(Ω) is transient if Pµ0 [∃t s.t. µt 6∈ K] = 1 for any initial
belief µ0 ∈ K. Fix any γ ∈ (0, 1). Given assumption (i), Claims 1 and 2 in the proof of
Theorem 1 ensure that there exist neighborhoods B1 ⊇ B′1 3 δω1 such that

Pµ0 [µt ∈ B1∀t] = Pµ0 [µt ∈ B1∀t, and µt → δω1 ] ≥ γ for all initial beliefs µ0 ∈ B′1. (19)

By assumption (ii), ∆({ω2, ..., ωN}) admits a neighborhood ∆2 such that Pµ0 [∃t s.t. µt /∈
∆2] = 1 for all initial beliefs µ0 ∈ ∆2 \ ∆({ω2, ..., ωN}). Since, by definition, initial beliefs
have full support, we equivalently have that Pµ0 [∃t s.t. µt /∈ ∆2] = 1 for all initial beliefs
µ0 ∈ ∆2. Thus, ∆2 is transient.

There exist T ∈ N and η > 0 such that

Pµ0 [∃t ≤ T s.t. µt ∈ B′1] ≥ η (20)

for every initial belief µ0 6∈ ∆2. To see this, take L > 1 sufficiently large so that (i) µ ∈ B′1
for all µ such that log µ(ω1)

µ(ωn)
≥ L for each n > 1, (ii) log µ(ω1)

µ(ωn)
≥ 1/L for all µ 6∈ ∆2 and

n > 1. By continuity of P, P̂ and assumption (iii), there exists ε > 0 such that for all µ in
the compact set {µ ∈ ∆(Ω) : L ≥ minn>1 log µ(ω1)

µ(ωn)
≥ 1/L}, there is zµ such that Pµ(zµ) > ε

and log P̂µ(zµ|ω1)

P̂µ(z|ωn)
> ε for all n 6= 1. Starting from any initial belief µ0 6∈ ∆2, consider the

realization of the sequence (µt) of the form zt = zµt , which ensures log µt(ω1)
µt(ωn)

≥ 1/L+ tε for
each n > 1 and t. Along this sequence µt′ ∈ B′1 for some t′ ≤ L−1/L

ε
. Thus the desired claim

(20) holds by choosing T ≥ L−1/L
ε

and γ = εT .
For each initial belief µ0, define h(µ0) := Pµ0 [µt → δω1 ]. To show global stability of δω1 ,

we will prove that infµ∈∆◦(Ω) h(µ) = 1. Note first that for any initial belief µ0, τ := inf{t :

µt 6∈ ∆2} satisfies Pµ0 [τ < ∞] = 1 as ∆2 is transient. Thus, by the Markov property of µt,
we have

h(µ0) = Eµ0 [h(µτ )] ≥ inf
µ∈∆◦(Ω)\∆2

h(µ),

whence
inf

µ∈∆◦(Ω)
h(µ) = inf

µ∈∆◦(Ω)\∆2

h(µ). (21)

Next, consider any initial belief µ0 ∈ B′1 and let τ ′ := inf{t : µt 6∈ B1}. By the Markov
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property and (19), we have

h(µ0) = Pµ0 [τ ′ =∞]Pµ0 [µt → δω1|τ ′ =∞] + Pµ0 [τ ′ <∞]Eµ0 [h(µτ ′)|τ ′ <∞]

= Pµ0 [τ ′ =∞] + Pµ0 [τ ′ <∞]Eµ0 [h(µτ ′)|τ ′ <∞] ≥ γ + (1− γ) inf
µ∈∆◦(Ω)

h(µ).

Combining this with (21) yields

inf
µ∈B′1

h(µ) ≥ γ + (1− γ) inf
µ∈∆◦(Ω)\∆2

h(µ). (22)

Finally, consider any initial belief µ0 6∈ ∆2 and let τ ′′ := min{inf{t : µt ∈ B′1}, T + 1}.
Then, by the Markov property and (20)-(22), we have

h(µ0) = Pµ0 [τ ′′ ≤ T ]Eµ0 [h(µτ ′′)|τ ′′ ≤ T ] + Pµ0 [τ ′′ > T ]Eµ0 [h(µτ ′′)|τ ′′ > T ]

≥ Pµ0 [τ ′′ ≤ T ] inf
µ∈B′1

h(µ) + Pµ0 [τ ′′ > T ] inf
µ∈∆◦(Ω)

h(µ)

≥ η inf
µ∈B′1

h(µ) + (1− η) inf
µ∈∆◦(Ω)

h(µ) ≥ ηγ + (1− ηγ) inf
µ∈∆◦(Ω)\∆2

h(µ).

Since this holds for all µ0 6∈ ∆2, this implies infµ∈∆◦(Ω)\∆2 h(µ) = 1. Thus, by (21),
infµ∈∆◦(Ω) h(µ) = 1, as required.

C.3 Proof of Theorem 4

To prove that δω1 is globally stable, it suffices to show that the assumptions in Lemma 4 are
satisfied. Note that assumptions (i) and (iii) in Lemma 4 follow from assumptions (i) and
(iii) in Theorem 4 applied with n = 1. Thus, it remains to show that ∆({ω2, . . . , ωN}) is
unstable. We prove inductively that ∆({ωN−m, . . . , ωN}) is unstable for allm = 0, . . . , N−2.
For m = 0, this holds since δωN is unstable by assumption (ii) in Theorem 4. The following
lemma completes the proof, by showing that the inductive step follows from assumptions
(i)–(iii) in Theorem 4.

Lemma 12. Fix any n ∈ {2, . . . , N − 1} and suppose that ∆({ωn+1, . . . , ωN}) is unstable.
Assume that (i) there exist p > 0 and a neighborhood Bn 3 δωn such that ωn �pµ ωk for
all k > n and µ ∈ Bn \ {δωn}; (ii) δωn is unstable; and (iii) for each mixed belief µ ∈
∆({ωn, . . . , ωN}), there exists z ∈ suppPµ such that P̂µ(z|ωn) > P̂µ(z|ωk) for all k > n.
Then ∆({ωn, . . . , ωN}) is unstable.

Proof. Note first that since ∆({ωn+1, . . . , ωN}) is unstable, there exists εn+1 > 0 such that
∆n+1 := {µ ∈ ∆(Ω) : µ({ωn+1, ..., ωN}) ≥ 1 − εn+1} is transient. Moreover, we can assume
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that Bn in assumption (i) takes the form {µ ∈ ∆(Ω) : µ(ωn) > 1−κ} for some κ > 0, where,
by choosing κ sufficiently small, assumption (ii) ensures that Bn is transient.

We claim that we can choose ε > 0, γ ∈ (0, 1), and εn ∈ (0, εn+1) such that, defining

∆n := {µ ∈ ∆(Ω) : µ({ωn, ..., ωN}) ≥ 1− εn}, B′n := {µ ∈ ∆n :
∑
k>n

(
µ(ωk)

µ(ωn)

)p
≤ ε},

the following three properties are satisfied:

B′n ⊆ Bn (23)

∀µ ∈ ∆n \ (∆n+1 ∪B′n), ∃z ∈ Z with Pµ(z),
P̂µ(z|ωn)

P̂µ(z|ωk)
− 1 ≥ γ for all k > n (24)

εn+1

εn+1 − εn
≤ 1 + γ. (25)

To see this, we first pick ε > 0 sufficiently small that µ(ωn) ≥ 1 − κ/2 holds for every
µ ∈ ∆({ωn, . . . , ωN}) with

∑
k>n

(
µ(ωk)
µ(ωn)

)p
≤ ε. Then (23) is satisfied for all sufficiently small

εn ∈ (0, εn+1). To show (24), note that by assumption (iii), for all µ ∈ ∆({ωn, . . . , ωN}) \
{δωn , . . . , δωN}, there exists z ∈ Z with Pµ(z), P̂µ(z|ωn)

P̂µ(z|ωk)
− 1 > 0 for all k > n. Moreover, given

ε > 0, but independent of the choice of εn, µ(ωn), . . . , µ(ωN) are bounded away from 1 for
all µ ∈ ∆({ωn, . . . , ωN}) \ (∆n+1 ∪ B′n). Thus, ∆({ωn, . . . , ωN}) \ (∆n+1 ∪ B′n) is contained
in some compact set K ⊂ ∆({ωn, . . . , ωN}) \ {δωn , . . . , δωN}. Hence, we can find γ ∈ (0, 1)

such that41

∀µ ∈ ∆({ωn, . . . , ωN}) \ (∆n+1 ∪B′n),∃z ∈ Z with Pµ(z),
P̂µ(z|ωn)

P̂µ(z|ωk)
− 1 ≥ 2γ for all k > n,

where γ can be chosen independently of εn. For all sufficiently small εn, we can then ensure
that (24) and (25) hold.42

For ε, γ, and εn as chosen above, we establish the following two claims:
Claim 1: There exist T ∈ N such that Pµ0 [∃t ≤ T s.t. µt ∈ B′n ∪∆c

n] ≥ γT for every initial
belief µ0 ∈ ∆n \∆n+1.

Proof of Claim 1. Observe first that µ0(ωn+1)
µ0(ωn)

, . . . , µ0(ωN )
µ0(ωn)

are uniformly bounded from above

41By Assumption 1, the expression maxz∈Z min{Pµ(z),
P̂µ(z|ωn)

P̂µ(z|ωk)
− 1} is finite and lower-semicontinuous in

µ. Hence, since the expression is strictly positive for all µ in the compact set K, so is its minimum over K.
42The fact that (24) holds for small enough εn again follows from the lower-semicontinuity of expression

maxz∈Z min{Pµ(z),
P̂µ(z|ωn)

P̂µ(z|ωk)
− 1} in µ. Since the expression is greater than 2γ on ∆({ωn, ..., ωN}) \ (∆n+1 ∪

B′n), it must be greater than γ in some sufficiently small neighborhood of ∆({ωn, ..., ωN}) \ (∆n+1 ∪B′n).
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for all µ0 ∈ ∆n \ ∆n+1, since µ0(ωn) ≥ εn+1 − εn > 0. Thus, there exists T such that∑
k>n

(
µ0(ωk)
µ0(ωn)

(1 + γ)−T
)p
≤ ε.

Starting with any initial belief µ0 ∈ ∆n\∆n+1, we recursively define the following sequence
of signal realizations z0, z1, . . . , zT ′ with T ′ ≤ T − 1 and corresponding updated beliefs
µ1, µ2, . . . , µT ′+1 (that is, µt+1 is the update of µt following signal realization zt). Suppose
we have constructed z0, . . . , zt−1 for some t ∈ {0, . . . , T}. We distinguish two cases:

(a) Suppose µt ∈ B′n ∪∆c
n. Then we set T ′ = t− 1 and terminate the construction of the

signal sequence.
(b) Suppose µt ∈ ∆n \ (∆n+1 ∪ B′n). Then by (24), we can pick a signal zt such that

Pµt(zt),
P̂µt (zt|ωn)

P̂µt (zt|ωk)
− 1 ≥ γ for all k > n. We claim that the updated belief µt+1 satisfies

µt+1({ωn+1, . . . , ωN}) ≤ µt({ωn+1, . . . , ωN}), so that µt+1 6∈ ∆n+1. To see this, suppose to the
contrary that µt+1({ωn+1, . . . , ωN}) > µt({ωn+1, ..., ωN}). By choice of zt, we have µt+1(ωn)

µt+1(ωk)
≥

µt(ωn)
µt(ωk)

(1 + γ) for each k > n. Thus, µt+1(ωn)
µt(ωn)

≥ maxk>n
µt+1(ωk)
µt(ωk)

(1 + γ) ≥ µt+1({ωn+1,...,ωN})
µt({ωn+1,...,ωN})

(1 +

γ) > 1 + γ. At the same time,

µt+1(ωn)

µt(ωn)
≤ 1− µt+1({ωn+1, . . . , ωN})

1− µt({ωn+1, . . . , ωN})− εn
<

1− µt({ωn+1, . . . , ωN})
1− µt({ωn+1, . . . , ωN})− εn

≤ εn+1

εn+1 − εn

where the first inequality holds because µt ∈ ∆n and the third because µt 6∈ ∆n+1. Thus,
εn+1

εn+1−εn ≥
µt+1(ωn)
µt(ωn)

> 1 + γ, which contradicts (25).
Note that the construction above ensures that case (a) must occur at the latest at t = T ,

so that T ′ ≤ T − 1. Indeed, if (b) holds for all t < T , then µT ∈ B′n, as
∑

k>n

(
µT (ωk)
µT (ωn)

)p
≤∑

k>n

(
µ0(ωk)
µ0(ωn)

(1 + γ)−T
)p
≤ ε by (b) and the choice of T . This proves Claim 1, as by

construction the sequence of signal realizations (z0, . . . , zT ′) occurs with probability at least
γT
′+1.

Claim 2: Let τ := inf{t : µt 6∈ B′n}. There exists ξ ∈ [0, 1) such that Pµ0 [τ < ∞] = 1 and
Pµ0 [µτ ∈ ∆n \B′n] ≤ ξ for every initial belief µ0 ∈ B′n.

Proof of Claim 2. Note that Pµ0 [τ < ∞] = 1 is immediate from (23) and the fact that Bn

is transient. To show the existence of ξ, define `t :=
∑

k>n

(
µmin{t,τ}(ωk)

µmin{t,τ}(ωn)

)p
. By (23) and

assumption (ii), `t is a non-negative supermartingale, and in particular Eµ0 [`1] < `0 ≤ ε

for every initial belief µ0 ∈ B′n. Since Eµ0 [`1] is continuous in µ0 by Lemma 10 and B′n is
compact, it follows that there exists ξ ∈ [0, 1) such that Eµ0 [`1] ≤ ξε holds for every initial
belief µ0 ∈ B′n. Hence,

Pµ0 [µτ ∈ ∆n \B′n]ε+ Pµ0 [µτ 6∈ ∆n \B′n] · 0 ≤ Eµ0 [`τ ] ≤ Eµ0 [`1] ≤ ξε,

42



where the first inequality holds by definition of B′n. Thus, Pµ0 [µτ ∈ ∆n \B′n] ≤ ξ.

To complete the proof of Lemma 12, for each initial belief µ0, define g(µ0) := Pµ0 [µt ∈
∆n∀t]. We verify that supµ0∈∆n

g(µ0) = 0. First, take any µ0 ∈ ∆n ∩ ∆n+1 and set τ ′ :=

inf{t : µt 6∈ ∆n+1}, which satisfies Pµ0 [τ ′ < ∞] = 1 since ∆n+1 is transient. By the Markov
property,

g(µ0) = Pµ0 [µτ ′ ∈ ∆n]Eµ0 [g(µτ ′)|µτ ′ ∈ ∆n] + Pµ0 [µτ ′ /∈ ∆n] · 0 ≤ sup
µ∈∆n\∆n+1

g(µ).

This implies that
sup
µ0∈∆n

g(µ0) = sup
µ0∈∆n\∆n+1

g(µ0). (26)

Next, take any µ0 ∈ B′n and define τ := inf{t : µt 6∈ B′n} as in Claim 2. Then, by the
Markov property,

g(µ0) = Pµ0 [µτ ∈ ∆n]Eµ0 [g(µτ )|µτ ∈ ∆n] ≤ ξ sup
µ∈∆n

g(µ) = ξ sup
µ∈∆n\∆n+1

g(µ)

where the inequality holds by Claim 2 and the equality by (26). Thus

sup
µ∈Bn

g(µ) ≤ ξ sup
µ∈∆n\∆n+1

g(µ). (27)

Finally, take any µ0 ∈ ∆n \∆n+1 and let τ ′′ := inf{min{t : µt ∈ ∆c
n ∪B′n}, T + 1}. Then,

by the Markov property,

g(µ0) = Pµ0 [τ ′′ ≤ T ]Eµ0 [g(µτ )|τ ′′ ≤ T ] + Pµ0 [τ ′′ > T ]Eµ0 [g(µτ )|τ ′′ > T ]

≤ Pµ0 [τ ′′ ≤ T ] sup
µ∈Bn

g(µ) + Pµ0 [τ ′′ > T ] sup
µ∈∆n

g(µ)

≤ γT sup
µ∈Bn

g(µ) + (1− γT ) sup
µ∈∆n

g(µ) ≤ (γT ξ + 1− γT ) sup
µ∈∆n\∆n+1

g(µ),

where the second inequality follows from Claim 1 and the fact that supµ∈Bn g(µ) ≤ supµ∈∆n
g(µ)

by (27), and the final inequality holds by (26)–(27). Thus, supµ∈∆n\∆n+1
g(µ) = 0 and the

desired conclusion follows from (26).
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D Proofs for Section 6

D.1 Proof of Proposition 1

We expand the finite state space Ω = {ω1, . . . , ωN} to the continuous interval Ω = [ω, ω]

and show that S∞(Ω) = {ω̂}. The result then follows from Theorem 3 and the observation
that S∞(Ω) approximates S∞(Ω) arbitrarily closely whenever Ω is sufficiently dense in Ω

(see Proposition 7 in Appendix F).
Note first that at belief δω, the true probability Pδω(1|ω∗) = ω∗ − βa(δω) and perceived

probability P̂δω(1|ω′) = ω′ − β̂a(δω) of high demand are equalized in state ω′ = ω∗ + (β̂−β)ω

2β̂
.

Thus, for any interval Ω′ = [ω′, ω′], the %δω -maximal state in Ω′ is given by

m(ω; Ω′) := min{max{ω′, ω∗ +
(β̂ − β)ω

2β̂
}, ω′}

which is a contraction map. Suppose β̂ ≥ β, so that the mapping m(·; Ω′) is weakly increas-
ing; case β̂ < β is analogous.

One can verify (see Lemma 15 in Appendix F) that for each k, Sk(Ω) is given by
[mk(ω),mk(ω)]. Hence, at each step of the iteration, Sk(Ω) contracts by a factor of at
least β̂−β

2β̂
, as mk(ω) − mk(ω) ≤ β̂−β

2β̂

(
mk−1(ω)−mk−1(ω)

)
. Moreover, since ω̂ ∈ Ω and

ω̂ = m(ω̂; Ω′) for any interval Ω′ 3 ω̂, we must have ω̂ ∈ Sk(Ω) for all k. This implies that
S∞(Ω) = {ω̂}, as claimed.

D.2 Proof of Proposition 2

Fix any Ω = {ω1, . . . , ωN} and β. By finiteness of Ω, it suffices to find an appropriate ε
separately for each true state ω∗ ∈ Ω. Fix any ω∗ ∈ Ω. By (1), the true and perceived
probabilities of high demand given β̂ satisfy Pµ(1) = ω∗ − βEµ[ω]

2β̂
and P̂µ(1|ω) = ω − Eµ[ω]

2
.

Thus, if β̂ = β, then ω∗ �µ ω for all µ ∈ ∆(Ω) and ω 6= ω∗. Since
∑

z Pµ(z) log
(
P̂µ(z|ω)

P̂µ(z|ω∗)

)
is continuous in µ (by Lemma 10) and ∆(Ω) is compact, this implies that for all ω 6= ω∗,
maxµ∈∆(Ω)

∑
z Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)
< 0 at β̂ = β. Moreover, since

∑
z Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)
is continuous in β̂, so is maxµ∈∆(Ω)

∑
z Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)
. Thus, there exists ε > 0 such

that for all β̂ with |β̂ − β| < ε and ω 6= ω∗, maxµ∈∆(Ω)

∑
z Pµ(z) log

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)
< 0, that is,

ω∗ �µ ω for all µ. Then, for any β̂ with |β̂ − β| < ε, Theorem 3 implies that δω∗ is globally
stable in any state space Ω′ ⊆ Ω with ω∗ ∈ Ω′; equivalently, learning is successful at ω∗.
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D.3 Proof of Lemma 5

Fix any q and true state ω∗ ∈ Ω. We will find ε > 0 such that learning is successful at ω∗ for
any q̂ with |q̂ − q| < ε. This ensures the desired conclusion by finiteness of Ω. Consider any
q̂. Since C is constant and v is strictly convex, we have γq̂(µ) = γ for all mixed µ. Thus, for
each mixed µ, the true and perceived probabilities of signal 1 satisfy Pµ(1) = q + γω∗ and
P̂µ(1|ω) = q̂ + γω. If q̂ = q, then Jensen’s inequality implies that for any p ∈ (0, 1), ω 6= ω∗,
and mixed µ, ∑

z

Pµ(z)

(
P̂µ(z|ω)

P̂µ(z|ω∗)

)p

< 1, (28)

where the value of the left-hand side is independent of µ. Hence, there exists ε > 0 such
that for any q̂ with |q̂− q| < ε and any mixed µ and ω 6= ω∗, (28) continues to hold, so that
ω∗ �pµ ω. Thus, for any q̂ with |q̂ − q| < ε, Proposition 5 implies that δω∗ is globally stable
in any state space Ω′ ⊆ Ω with ω∗ ∈ Ω′, i.e., learning is successful at ω∗.

D.4 Proof of Lemma 6

Consider any strictly increasing cost function C. We will prove the following: Fix any q̂,
ω ∈ Ω, and γ̃ > 0. Then there exists a neighborhood B 3 δω such that γq̂(µ) < γ̃ for all
µ ∈ B.

At any belief µ, let Vµ(γ) denote the agent’s expected payoff to precision γ; that is,

Vµ(γ) = (q̂ + γµ · ω) v (µ(γ)) + (1− q̂ − γµ · ω) v
(
µ(γ)

)
, (29)

where ω := (ω1, . . . , ωN)′ ∈ RN and µ(γ) and µ(γ) denote the posteriors updated from µ

under precision choice γ and perception q̂ following signals 1 and 0, respectively. By (2),
γq̂(µ) ∈ argmaxγ∈[0,γ] Vµ(γ)− C(γ) for all µ.

Since C is strictly increasing, C(γ̃) > C(0). Thus, by continuity of v, there exists a
neighborhood B 3 δω such that for each µ ∈ B and γ ∈ {0, γ},

|Vµ(γ)− v(δω)| < C(γ̃)− C(0)

2
. (30)

Note that Vµ(γ) is increasing in γ for all µ. Thus, it follows that (30) holds for each µ ∈ B
and γ ∈ [0, γ]. This implies that for any γ ∈ [0, γ] and µ ∈ B,

Vµ(γ)− Vµ(0) ≤ |Vµ(γ)− v(δω)|+ |Vµ(0)− v(δω)| < C(γ̃)− C(0). (31)
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Hence, for all γ ≥ γ̃ and µ ∈ B, we have

Vµ(γ)− C(γ) ≤ Vµ(γ)− C(γ̃) < Vµ(0)− C(0),

where the first inequality uses the fact that C is increasing and the second inequality uses
(31). Thus, for all µ ∈ B, we have γq̂(µ) < γ̃, as claimed.

D.5 Proof of Proposition 3

Fix any true state ω∗ ∈ Ω and consider any q̂. The assumption that learning is successful at
all states if q̂ = q implies that for all mixed µ, we have γq̂(µ) > 0. Now suppose that q < q̂;
the argument for q > q̂ is analogous.

Consider any ω ∈ Ω and p ∈ (0, 1). By Lemma 6, there exists B 3 δω such that
γq̂(µ) < q̂−q

ωN−ω1
for all µ ∈ B. Thus, for any ω′, ω′′ ∈ Ω with ω′ < ω′′ and any µ ∈ B \ {δω},

we have

∑
z Pµ(z)

(
P̂µ(z|ω′′)
P̂µ(z|ω′)

)p
= (q + γq̂(µ)ω∗)

(
q̂+γq̂(µ)ω′′

q̂+γq̂(µ)ω′

)p
+ (1− q − γq̂(µ)ω∗)

(
1−q̂−γq̂(µ)ω′′

1−q̂−γq̂(µ)ω′

)p
< (q̂ + γq̂(µ)ω′)

(
q̂+γq̂(µ)ω′′

q̂+γq̂(µ)ω′

)p
+ (1− q̂ − γq̂(µ)ω′)

(
1−q̂−γq̂(µ)ω′′

1−q̂−γq̂(µ)ω′

)p
< 1,

so that ω′ �pµ ω′′. Here the first inequality uses the fact that q + γq̂(µ)ω∗ < q̂ + γq̂(µ)ω′ <

q̂ + γq̂(µ)ω′′ (since 0 < γq̂(µ) < q̂−q
ωN−ω1

and ω′ < ω′′), and the second inequality holds by
Jensen’s inequality. Note also that for each mixed µ, γq̂(µ) > 0 implies P̂µ(1|ω′) < P̂µ(1|ω′′).
Thus, conditions (a) and (b) in Remark 2 are met. Hence, Theorem 4 implies that δω1 is
globally stable.

D.6 Proof of Lemma 7

Fix any q̂. We begin with some preliminary observations about the agent’s expected value
Vµ(γ) of precision γ at current belief µ, as given by (29). Note that the posteriors µ(γ) and
µ(γ) of µ under signal realizations 1 and 0, respectively, assign probabilities

µn(γ) =
µn(q̂ + γωn)

q̂ + γµ · ω
, µ

n
(γ) =

µn(1− q̂ − γωn)

1− q̂ − γµ · ω
,
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to each state ωn. The first and second derivatives with respect to γ satisfy

µ′n(γ) = µn
q̂(ωn − µ · ω)

(q̂ + γµ · ω)2
, µ′

n
(γ) = −µn

(1− q̂)(ωn − µ · ω)

(1− q̂ − γµ · ω)2
,

µ′′n(γ) = −2µnµ · ω
q̂(ωn − µ · ω)

(q̂ + γµ · ω)3
, µ′′

n
(γ) = −2µnµ · ω

(1− q̂)(ωn − µ · ω)

(1− q̂ − γµ · ω)3
.

Thus, the marginal value of γ at µ satisfies

V ′µ(γ) = µ · ω
(
v (µ(γ))− v

(
µ(γ)

))
+ (q̂ + γµ · ω)

∑
n

∂nv(µ(γ))µ′n(γ)

+ (1− q̂ − γµ · ω)
∑
n

∂nv(µ(γ))µ′
n
(γ),

where ∂nv(µ) denotes the partial derivative of v with respect to the nth coordinate. Since
µ(0) = µ(0) = µ and q̂µ′n(0) + (1− q̂)µ′

n
(0) = 0 for each n, this yields

V ′µ(0) = 0. (32)

The second derivative satisfies

V ′′µ (γ) = 2µ · ω
∑
n

(
∂nv(µ(γ))µ′n(γ)− ∂nv(µ(γ))µ′

n
(γ)
)

+(q̂ + γµ · ω)

(∑
n,m

∂2
n,mv(µ(γ))µ′n(γ)µ′m(γ) +

∑
n

∂nv(µ(γ))µ′′n(γ)

)

+(1− q̂ − γµ · ω)

(∑
n,m

∂2
n,mv(µ(γ))µ′

n
(γ)µ′

m
(γ) +

∑
n

∂nv(µ(γ))µ′′
n
(γ)

)
.

Evaluating this at γ = 0 yields

V ′′µ (0) =
1

q̂(1− q̂)
∑
n,m

∂2
n,mv(µ)µn(ωn − µ · ω)µm(ωm − µ · ω). (33)

To prove Lemma 7, consider any twice continuously differentiable C with C ′(0) = C ′′(0) =

0. For any mixed µ, we have V ′µ(0) = 0 = C ′(0) by (32), but V ′′µ (0) > 0 = C ′′(0) by (33) and
the fact that the Hessian of v is positive definite. Thus, by Taylor approximation,

Vµ(γ)− C(γ) > Vµ(0)− C(0)

for all sufficiently small γ > 0. Hence, for all mixed µ, γq̂(µ) > 0, as required.
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For the “moreover” part of Lemma 7, it is clear that (9) is necessary for learning to be
successful at all states ω∗ when q̂ = q. To see that (9) is sufficient, fix any true state ω∗ and
suppose that q̂ = q. Then Pµ(·) = P̂µ(·|ω∗) for all µ, and by (9), P̂µ(·|ω∗) 6= P̂µ(·|ω) for all
ω 6= ω∗ and mixed µ. Thus, by Corollary 2, δω∗ is globally stable at ω∗ in any state space
Ω′ ⊆ Ω with ω∗ ∈ Ω′. Hence, learning is successful at ω∗.

D.7 Proof of Lemma 8

Consider any true state ω∗ ∈ Ω. Since F = F̂ , we have Pµ(·) = P̂µ(·|ω∗) for all µ. Moreover,
for any mixed µ, the monotone likelihood ratio assumption on private signals ensures that
µs(ω)
µs(ω′)

is strictly increasing in s for any states ω > ω′ in supp(µ), which implies that θ∗(µs)
is strictly decreasing in s. Thus, for all mixed µ, P̂µ(0|ω) =

´
F̂ (θ∗(µs))φ(s|ω) ds is strictly

decreasing in ω, so that P̂µ(·|ω) 6= P̂µ(·|ω∗) for all ω 6= ω∗. Hence, by Corollary 2, δω∗ is
globally stable at ω∗ in every state space Ω′ ⊆ Ω with ω∗ ∈ Ω′. This shows that learning is
successful at ω∗.

D.8 Proof of Lemma 9

Let Φ(·|ω) denote the cumulative distribution of signal s conditional on ω. Since δsω = δω for
each ω and s, the bounded convergence theorem implies that limµ→δω

´
F̂ (θ∗(µs))dΦ(s|ω′) =

F̂ (θ∗ω) for each ω, ω′, as claimed.

D.9 Proof of Proposition 4

We will invoke the following lemma:

Lemma 13. Fix any true state ω∗ ∈ Ω, p ∈ (0, 1), and n = 1, . . . , N . If F (θ∗n) > F̂ (θ∗n),
then there exists a neighborhood Bn 3 δωn such that ω` �pµ ωk for all `, k with ` < k and
all mixed µ ∈ Bn. If F (θ∗n) < F̂ (θ∗n), then there exists a neighborhood Bn 3 δωn such that
ωk �pµ ω` for all `, k with ` < k and all mixed µ ∈ Bn.

Proof. We consider the case F (θ∗n) > F̂ (θ∗n). The argument when F (θ∗n) < F̂ (θ∗n) is analo-
gous. By Lemma 9, there exists a neighborhood Bn 3 δωn such that for all µ ∈ Bn and ω′,
we have |Pµ(0) − F (θ∗n)|, |P̂µ(0|ω′) − F̂ (θ∗n)| < F (θ∗n)−F̂ (θ∗n)

2
. Hence, Pµ(0) > P̂µ(0|ω′) for all

µ ∈ Bn and ω′. Moreover, by the monotone likelihood ratio assumption on private signals,
we have P̂µ(0|ωk)

P̂µ(0|ω`)
< P̂µ(1|ωk)

P̂µ(1|ω`)
for any `, k with ` < k and mixed µ.
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Thus, for all µ ∈ Bn and `, k with ` < k, we have

∑
z

Pµ(z)

(
P̂µ(z|ωk)
P̂µ(z|ω`)

)p

<
∑
z

P̂µ(z|ω`)

(
P̂µ(z|ωk)
P̂µ(z|ω`)

)p

< 1,

where the first inequality holds by the observations in the previous paragraph and the second
inequality holds by Jensen’s inequality. Thus, ω` �pµ ωk, as claimed.

We now prove Proposition 4. For the first part, note that if F (θ∗N) < F̂ (θ∗N), then
Lemma 13 yields some neighborhood B 3 δωN such that ωN �pµ ωk for all k 6= N and mixed
µ ∈ B, while if F (θ∗N) > F̂ (θ∗N), then Lemma 13 yields a neighborhood B 3 δωN such that
ω1 �pµ ωN for all mixed µ ∈ B. Thus, by Theorems 1-2, δωN is locally stable in the former
case and unstable in the latter. Finally, if F >FOSD F̂ , then Lemma 13 implies that for each
n, there is a neighborhood Bn 3 δωn such that ωk �pµ ω` for all ` > k and mixed µ ∈ Bn, so
that condition (b) in Remark 2 is met when states are ranked in decreasing order. Moreover,
condition (a) in Remark 2 is satisfied by the monotone likelihood ratio assumption on private
signals and the monotonicity of utilities. Hence, by Theorem 4, δωN is globally stable.

The arguments for part 2 of Proposition 4 are analogous. Finally, for the third part, note
that if F (θ∗n) 6= F (θ∗n), then Lemma 13 implies that for some neighborhood Bn 3 δωn , we
either have ω1 �pµ ωn for all mixed µ ∈ Bn or ωN �pµ ωn for all mixed µ ∈ Bn. In either case,
δωn is unstable by Theorem 2, as claimed.

References
Banerjee, A. (1992): “A simple model of herd behavior,” The Quarterly Journal of Economics, 107(3),

797–817.

Berk, R. H. (1966): “Limiting behavior of posterior distributions when the model is incorrect,” The Annals
of Mathematical Statistics, pp. 51–58.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992): “A theory of fads, fashion, custom, and
cultural change as informational cascades,” Journal of Political Economy, 100(5), 992–1026.

Bohren, J. A. (2016): “Informational herding with model misspecification,” Journal of Economic Theory,
163, 222–247.

Bohren, J. A., and D. Hauser (2018): “Social Learning with Model Misspecification: A Framework and
a Robustness Result,” working paper.

Bohren, J. A., A. Imas, and M. Rosenberg (2019): “The Dynamics of Discrimination: Theory and
Evidence,” American Economic Review, forthcoming.

Bolton, P., and C. Harris (1999): “Strategic experimentation,” Econometrica, 67(2), 349–374.

Bushong, B., and T. Gagnon-Bartsch (2019): “Learning with Misattribution of Reference Depen-
dence,” working paper.

Chade, H., and E. Schlee (2002): “Another look at the Radner–Stiglitz nonconcavity in the value of
information,” Journal of Economic Theory, 107(2), 421–452.

49



Cho, I.-K., and K. Kasa (2017): “Gresham’s Law of Model Averaging,” American Economic Review,
107(11), 3589–3616.

Cong, T. (2019): “A Bayesian Learning Model of Cyclical Actions under misspecification,” working paper.

Dasaratha, K., and K. He (2019): “Network Structure and Naive Sequential Learning,” .

Deb, J., and Y. Ishii (2016): “Reputation building under uncertain monitoring,” Cowles Foundation
Discussion Paper.

Eil, D., and J. M. Rao (2011): “The good news-bad news effect: asymmetric processing of objective
information about yourself,” American Economic Journal: Microeconomics, 3(2), 114–38.

Esponda, I. (2008): “Behavioral equilibrium in economies with adverse selection,” American Economic
Review, 98(4), 1269–91.

Esponda, I., and D. Pouzo (2016): “Berk–Nash Equilibrium: A Framework for Modeling Agents With
Misspecified Models,” Econometrica, 84(3), 1093–1130.

(2019): “Equilibrium in misspecified Markov decision processes,” working paper.

Esponda, I., D. Pouzo, and Y. Yamamoto (2019): “Asymptotic Behavior of Bayesian Learners with
Misspecified Models,” working paper.

Eyster, E., and M. Rabin (2005): “Cursed equilibrium,” Econometrica, 73(5), 1623–1672.

(2010): “Naive herding in rich-information settings,” American economic journal: microeconomics,
2(4), 221–43.

Frick, M., R. Iijima, and Y. Ishii (2019): “Misinterpreting Others and the Fragility of Social Learning,”
Cowles Foundation Discussion Paper.

Fudenberg, D., and D. M. Kreps (1993): “Learning mixed equilibria,” Games and Economic Behavior,
5(3), 320–367.

Fudenberg, D., G. Lanzani, and P. Strack (2020): “Limits Points of Endogenous Misspecified Learn-
ing,” working paper.

Fudenberg, D., G. Romanyuk, and P. Strack (2017): “Active learning with a misspecified prior,”
Theoretical Economics, 12(3), 1155–1189.

Gagnon-Bartsch, T. (2017): “Taste Projection in Models of Social Learning,” working paper.

Gagnon-Bartsch, T., M. Rabin, and J. Schwartzstein (2018): “Channeled Attention and Stable
Errors,” working paper.

Goeree, J. K., T. R. Palfrey, and B. W. Rogers (2006): “Social learning with private and common
values,” Economic theory, 28(2), 245–264.

He, K. (2018): “Mislearning from Censored Data: The Gambler’s Fallacy in Optimal-Stopping Problems,”
working paper.

Heidhues, P., B. Koszegi, and P. Strack (2018): “Unrealistic expectations and misguided learning,”
Econometrica, 86(4), 1159–1214.

(2019): “Convergence in Misspecified Learning Models with Endogenous Actions,” working paper.

Jehiel, P. (2005): “Analogy-based expectation equilibrium,” Journal of Economic Theory, 123(2), 81–104.

Martinelli, C. (2006): “Would rational voters acquire costly information?,” Journal of Economic Theory,
129(1), 225–251.

50



Mobius, M. M., M. Niederle, P. Niehaus, and T. Rosenblat (2014): “Managing Self-Confidence:
Theory and Experimental Evidence,” working paper.

Molavi, P. (2019): “Macroeconomics with Learning and Misspecification: A General Theory and Applica-
tions,” working paper.

Moscarini, G., and L. Smith (2002): “The law of large demand for information,” Econometrica, 70(6),
2351–2366.

Nyarko, Y. (1991): “Learning in mis-specified models and the possibility of cycles,” Journal of Economic
Theory, 55(2), 416–427.

Ortoleva, P., and E. Snowberg (2015): “Overconfidence in political behavior,” American Economic
Review, 105(2), 504–35.

Rabin, M. (2002): “Inference by believers in the law of small numbers,” The Quarterly Journal of Economics,
117(3), 775–816.

Smith, L., and P. Sørensen (2000): “Pathological outcomes of observational learning,” Econometrica,
68(2), 371–398.

Spiegler, R. (2016): “Bayesian networks and boundedly rational expectations,” The Quarterly Journal of
Economics, 131(3), 1243–1290.

Vives, X. (1993): “How fast do rational agents learn?,” The Review of Economic Studies, 60(2), 329–347.

51



Supplementary Appendix to

“Stability and Robustness in Misspecified Learning

Models”

Mira Frick, Ryota Iijima, and Yuhta Ishii

E Local stability and KL-dominance

Recall that Theorem 1 provides a condition for local stability in terms of p-dominance. The following
example shows that one cannot replace p-dominance with KL-dominance, i.e., condition (7) does
not ensure that δω is locally stable:

Example 5. Let Ω = {ω, ω′} and Z = {z, z}. Set

Pµ(z) =

f(log µ(ω)
µ(ω′)) for all mixed µ

1/2 otherwise,

P̂µ(z|ω) =
e− 1

e− e−1
, P̂µ(z|ω′) =

1− e−1

e− e−1
for all µ,

where f(x) :=
√
x−
√
x−1√

x+1−
√
x−1

> 1/2 for each x ∈ R. Note that limx→±∞ f(x) = 1/2. For each mixed
µ, observe that ∑

z

Pµ(z) log
P̂µ(z|ω)

P̂µ(z|ω′)
= 2f

(
log

µ(ω)

µ(ω′)

)
− 1 > 0,

so that ω �µ ω′. However, δω is unstable. To see this, fix any initial belief µ0 and let `t :=√
log

µmin{t,τ}(ω)

µmin{t,τ}(ω′)
where τ := inf{t : log µt(ω)

µt(ω′)
< 0}. Then (`t) is a non-negative martingale. This is

because

E[`t+1|(µs)s=0,...,t] =

f(log µt(ω)
µt(ω′)

)
√

log µt(ω)
µt(ω′)

+ 1 + (1− f(log µt(ω)
µt(ω′)

))
√

log µt(ω)
µt(ω′)

− 1 =
√

log µt(ω)
µt(ω′)

if t < τ

`t otherwise.

Thus, there is an L∞ random variable `∞ such that `t → `∞ almost surely. Since, by construction,∣∣∣log µt+1(ω)
µt+1(ω′) − log µt(ω)

µt(ω′)

∣∣∣ = 1 for all t, there is probability zero that µt converges to a mixed belief.

Thus, almost surely τ < ∞. Hence, almost surely there exists some t such that log µt(ω)
µt(ω′)

< 0 ,
which implies that δω is unstable. N
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F Iterated dominance under one-dimensional states

In this section, we focus on one-dimensional states and provide conditions under which iterated
dominance yields a unique outcome,43 and illustrate how this result unifies convergence results in
existing models. We consider a state space of the form Ω = [ω, ω] ⊆ R and allow the set of signals
Z to be any measurable space. We assume that KL(Pµ, P̂µ(·|ω)) is well-defined and continuous in
µ and ω.44

We say that complementarity holds if for all µ ≥FOSD µ′ and ω > ω′, we have

ω %µ′ (�µ′)ω′ =⇒ ω %µ (�µ)ω′. (34)

Likewise, substitutes holds if (34) is satisfied for all µ ≥FOSD µ′ and ω′ > ω. Standard mono-
tone comparative statics arguments show that the %µ-maximal states at any non-empty closed
subset Ω′ ⊆ Ω, denoted by m(µ; Ω′), are FOSD-increasing in µ under complementarity, and FOSD-
decreasing under substitutes.45

Define a correspondence on Ω by M(ω) := m(δω; Ω) for each ω. Observe that ω is a fixed point
of M if and only if δω is a Berk-Nash equilibrium. The following result provides conditions under
which iterated elimination of dominant states leads to the unique pure Berk-Nash equilibrium:

Proposition 6. Suppose that the correspondence ω 7→ m(δω; Ω′) is single-valued for each compact
interval Ω′, and one of the following holds:

1. complementarity holds and M has a unique fixed point;

2. substitutes holds and M is a contraction.

Then S∞(Ω) = {ω̂}, where ω̂ is the unique fixed point of M .

Observe that the unique fixed point assumption under the complementarity case is weaker than
the contraction assumption under substitutes. The intuition is analogous to the iterated elimination
of dominated strategies in game theory; if there is a unique Nash equilibrium, it is obtained by
iterated elimination under strategic complements, but this need not be the case under strategic
substitutes.

To illustrate how to verify the complementarity or substitutes condition in specific applications,
we consider a model of single-agent active learning that nests several leading examples:

43We thank Michihiro Kandori for suggesting this direction.
44That is, KL(Pµ(·), P̂µ(·|ω)) =

´
Z

log
dPµ(·)
dP̂µ(·|ω)

dPµ < ∞ for each µ and ω, where dPµ(·)
dP̂µ(·|ω)

is the Radon-
Nikodym derivative. The space of beliefs ∆(Ω) is endowed with the weak convergence topology.

45That is, maxm(µ; Ω′) and minm(µ; Ω′) are FOSD-increasing in µ under the complementarity case, and
decreasing under the substitutes case. Note that m(µ; Ω′) is non-empty and compact by the continuity of
KL(Pµ, P̂µ(·|ω)) in ω and the compactness of Ω′.
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Remark 5 (One-dimensional active learning model). Consider a model in which a single agent
chooses an action at from an interval A ⊆ R every period. Assume that the true signal distribution
is given by one of the following technologies: (i) Z = {0, 1} and the probability that zt = 1 is f(at);
or (ii) Z = R and the signal takes the form zt = f(at) + εt, where f is a strictly increasing and
continuously differentiable function, and εt is i.i.d and follows a full-support distribution that admits
a log-concave and positive density. Assume that the agent’s action is given by a FOSD-increasing
and continuous function of the belief µt. To model the agent’s misspecification, assume that in case
(i), she perceives the probability of zt = 1 to be f̂(at, ω) at each ω, and in case (ii) she perceives
the signal to take the form zt = f̂(at, ω) + εt at each ω and is correct about the distribution of εt,
where f̂ is continuously differentiable and strictly increasing in (a, ω).

Given belief µ, KL(Pµ(·), P̂µ(·|ω)) is strictly quasi-convex in ω and achieves its minimum at ω
if f(a(µ)) = f̂(a(µ), ω) (by Gibbs’ inequality); in particular, the correspondence ω 7→ m(δω; Ω′) is
single-valued for each compact interval Ω′. One can verify that if f ′(a) ≥ ∂f̂

∂a (a, ω) for each (a, ω)

then complementarity holds, while if f ′(a) ≤ ∂f̂
∂a (a, ω) for each (a, ω) then substitutes holds. N

The model in Remark 5 nests the monopoly pricing example (Example 1), where f(a) = ω∗−βa
and f̂(a, ω) = ω− β̂a. Thus, complementarity holds when β̂ ≥ β, and substitutes holds when β̂ ≤ β.
Given this, Proposition 1 follows from Proposition 6 combined with the finite approximation result
below (Proposition 7). The model also accommodates other examples that are considered in the
recent literature:

Example 6 (Effort choice by an overconfident agent (Heidhues, Koszegi, and Strack, 2018)). The
state space Ω = [ω, ω] parametrizes the level of some economic fundamental, where ω∗ denotes
the true state. The output in period t is given by Qt = Q(at, β, ω) + εt where at is the agent’s
effort in period t, β is the agent’s ability, and εt is mean-zero noise that follows a full-support and
log-concave density. While the true ability is given by β∗, the agent perceives it to be β̂ > β∗. In
each period t, the agent chooses effort at from an interval (a, a) ⊆ R to maximize expected output.

As in Heidhues, Koszegi, and Strack (2018), assume Q is twice-continuously differentiable such
that (i) Qaa < 0, and Qa(a, β, ω) > 0 > Qa(a, β, ω) for all (β, ω) (ii) Qβ, Qω > 0, (iii) Qaω > 0,
(iv) Qaβ ≤ 0, (v) |Qω| < κ for some constant κ > 0. These assumptions guarantee that the optimal
action a(µt) is continuous and FOSD-increasing in belief µt ∈ ∆(Ω). Moreover, any state ω > ω∗

is dominated by ω∗ because 0 > Q(a, β∗, ω∗) − Q(a, β̂, ω∗) > Q(a, β∗, ω∗) − Q(a, β̂, ω) for all a.
Therefore, up to one round of elimination, we can focus on the state space [ω, ω] with ω ≤ ω∗.
Under the notation in Remark 5, f(a) = Q(a, β∗, ω∗) and f̂(a, ω) = Q(a, β̂, ω). Complementarity
holds because f ′(a) − ∂f̂

∂a (a, ω) = Qa(a, β
∗, ω∗) −Qa(a, β̂, ω) ≥ Qa(a, β

∗, ω∗) −Qa(a, β̂, ω∗) ≥ 0 by
ω ≤ ω∗. As in Heidhues, Koszegi, and Strack (2018), assume that there is a unique pure Berk-Nash
equilibrium. Then the first part of Proposition 6 ensures that iterated elimination leads to the
unique state. N

Example 7 (Data censoring under the gambler’s fallacy (He, 2018)). Each period consists of a two-
stage decision problem. In the first stage, the output x1 follows N(m∗1, σ

2). If the output is lower
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than the agent’s threshold a, then the second stage output x2 is observed, which follows N(m∗2, σ
2).

The agent knows the first-stage mean m∗1 and variance σ2 in both stages, but is uncertain about
the second-stage mean. Thus, the state space Ω is a closed interval [m2,m2] of values of second-
stage means. While in reality there is no correlation between x1 and x2, the agent perceives negative
correlation. In particular, the agent perceives that underm2 ∈ Ω, the second-stage draw conditional
on realized x1 follows N(m2 − γ(x1 −m∗1), σ2), where γ ≥ 0 captures the extent of the gambler’s
fallacy.

The agent chooses the cutoff a ∈ R to maximize the expected value of the period payoff u :

R×R ∪ {∅} → R where u(x1, x2) denotes the utility when she draws (x1, x2), and u(x1, ∅) denotes
the utility when she only draws x1. Under the assumptions in He (2018), the threshold a is FOSD-
increasing in belief µ ∈ ∆(Ω). Under the notation of Remark 5, f(a) = ω∗ and f̂(a, ω) = ω −
γ(E[x1|x1 ≤ a]−m∗1). Thus, complementarity holds because f ′(a)− ∂f̂

∂a (a, ω) = γ ∂E[x1|x1≤a]
∂a ≥ 0. As

He (2018) shows, there is a unique pure Berk-Nash equilibrium. Hence, the first part of Proposition 6
ensures that iterated elimination leads to the unique state.46 N

While many economic examples (including the monopoly pricing example and the ones above)
are formulated using a continuous state space Ω = [ω, ω], our stability results are formulated for
finite state spaces. The following result shows that iterative elimination under the continuous state
space can be approximated by that under finite state spaces. Based on this, one can apply Theorem 3
to such economic examples up to discretizing state spaces.

Proposition 7. Assume the hypothesis in Proposition 6 and let ω̂ be the fixed point of M . Then
for any η > 0 there exists δ > 0 such that S∞(Ω′) ⊆ [ω̂− η, ω̂ + η] for any finite subset Ω′ ⊆ Ω that
is δ-dense in Ω.

F.1 Proofs

F.1.1 Proof of Proposition 6

Note that since the mapping ω 7→ m(δω; Ω′) is single-valued, it is also continuous by the continuity
of KL(Pµ, P̂µ(·|ω)) in ω and the Maximum theorem. Moreover, the mapping is monotonic under
either substitutes or complementarity. We prove the following preliminary lemmas:

Lemma 14. For any compact interval Ω′ ⊆ Ω, S(Ω′) = ∪ω∈Ω′m(ω; Ω′).
46He (2018) also considers the case in which the agent updates beliefs about the first-stage mean m1,

assuming that the state space Ω is a bounded parallelogram in R2 whose left and right edges are parallel to
the y-axis and whose top and bottom edges have slope −γ. In this case, any ω = (m1,m2) with m1 6= m∗1
is dominated by ω′ := (m1 + d,m2 − γd) such that |m1 −m∗1| > |m1 + d−m∗| for some d. This is because
ω′ yields a lower KL-divergence for the first-stage, while it provides the same second-stage prediction as ω
after any realization of x1. Therefore, after one round of elimination, we can focus on the one-dimensional
state space that corresponds to values of m2, and the same argument as above applies.
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Proof. Let Ω′ := [ω′, ω′]. Note that ∪ω∈Ω′m(ω; Ω′) = co{m(δω′ ; Ω′),m(δω′ ; Ω′)} sincem(·; Ω′) is con-
tinuous and monotone. Thus, by definition of S, it suffices to verify S(Ω′) ⊆ co{m(δω′ ; Ω′),m(δω′ ; Ω′)}.

Take any ω̂ 6∈ co{m(δω′ ; Ω′),m(δω′ ; Ω′)}. If m(δω′ ; Ω′) = m(δω′ ; Ω′) =: ω̂′ then m(µ; Ω′) =

ω̂′ for all µ ∈ ∆(Ω′) by the monotonicity of m(·; Ω′). Therefore ω̂′ �µ ω̂ for all µ ∈ ∆(Ω′),
so ω̂ 6∈ S(Ω′). Now consider the case m(δω′ ; Ω′) 6= m(δω′ ; Ω′). We focus on the case ω̂ >

max{m(δω′ ; Ω′),m(δω′ ; Ω′)} =: ω̂′, as the remaining case ω̂ < min{m(δω′ ; Ω′),m(δω′ ; Ω′)} follows
by a symmetric argument. If ω̂′ = m(δω′ ; Ω′), then ω̂′ �δω′ ω̂. In this case complementarity holds,
so ω̂′ �µ ω̂ for any µ ∈ ∆(Ω′). If ω̂′ = m(δω′ ; Ω′), then ω̂′ �δω′ ω̂. In this case substitutes holds, so
ω̂′ �µ ω̂ for any µ ∈ ∆(Ω′). In either case, ω̂ 6∈ S(Ω′).

Lemma 15. Sk(Ω) = ∪ω∈Sk−1(Ω)M(ω) for each k.

Proof. We inductively verify the claim. Observe that the claim holds for k = 1 by definition from
Lemma 14. Suppose that the claim holds up to k. For each ω ∈ Sk(Ω), this implies M(ω) ∈ Sk(Ω)

and hence M(ω) = m(ω;Sk(Ω)). Thus ∪ω∈Sk(Ω)M(ω) = ∪ω∈Sk(Ω)m(δω;Sk(Ω)) = Sk+1(Ω) by
Lemma 14.

Proof of Proposition 6. Since M is a continuous function, Lemma 15 implies that (Sk(Ω))k∈N is a
sequence of closed intervals that are decreasing in set-inclusion, which we denote by ([ωk, ωk])k∈N.

Consider the case of complementarity. Then Sk(Ω) = [ωk, ωk] = [M(ωk−1),M(ωk−1)] for every
k. If the claim of the proposition is not true then limk ωk < limk ωk. By continuity of m, we have
limk ωk = M(limk ωk) and limk ωk = M(limk ωk). This shows that both limk ωk and limk ωk are
fixed points of M , a contradiction.

Consider the case of substitutes. Then Sk(Ω) = [ωk, ωk] = [M(ωk−1),M(ωk−1)] for every k.
Thus ωk − ωk ≤ β(ωk−1 − ωk−1), where β ∈ [0, 1) denotes the contraction factor of M . Therefore
limk ωk − ωk = 0 so that S∞(Ω) consists of the unique fixed point ω̂ of M .

F.2 Proof of Proposition 7

We begin with a preliminary lemma:

Lemma 16. Take any interval Ω′ := [ω′, ω′] ⊆ Ω and η > 0. Then there exists δ > 0 such that
for any finite set Ω′′ that is δ-dense in Ω′ and included in [ω′ − δ, ω′ + δ], S(Ω′′) is η-dense in
S(Ω′) =: [s, s] and included in [s− η, s+ η].

Proof. We first show S(Ω′′) ⊆ [s − η, s + η] if we take small enough δ. Recall from the proof of
Lemma 14 that (i) s �µ ω for all ω ∈ [ω′, s−η] and µ ∈ ∆(Ω′), and (ii) s �µ ω for all ω ∈ [s+η, ω′]

and µ ∈ ∆(Ω′). By continuity of KL(Pµ, P̂µ(·|ω)) in (ω, µ), there exists δ ∈ (0, η) such that (i)
ω′ �µ ω for all ω ∈ [ω′− δ, s− η], ω′ ∈ [s− δ, s+ δ], and µ ∈ ∆([ω′− δ, ω′+ δ]), and (ii) ω′ �µ ω for
all ω ∈ [s+η, ω′+δ], ω′ ∈ [s−δ, s+δ], and µ ∈ ∆([ω′−δ, ω′+δ]). Thus under any Ω′′ ⊆ [ω′−δ, ω′+δ]
that is δ-dense in Ω′, (i) there exists ω′ ∈ Ω′′∩[s−δ, s+δ], which ensures ω 6∈ S(Ω′′) for any ω ≤ s−η,
and (ii) there exists ω′ ∈ Ω′′ ∩ [s− δ, s+ δ], which ensures ω 6∈ S(Ω′′) for any ω ≥ s+ η.
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Next we show that S(Ω′′) is η-dense in S(Ω′) if we take small enough δ. For this, fix any
subinterval [s′, s′] of S(Ω′) that has length η, and it suffices to show that S(Ω′′) ∩ [s′, s′] 6= ∅ for all
small enough δ. By Lemma 14 and the monotonicity and continuity of m, there exists ω′ ∈ Ω′ such
that s := m(δω′ ; Ω′) ∈ (s′, s′). Thus s �δω′ ω for all ω ∈ Ω′. By continuity of KL, under all small
enough δ, s �δω′ ω for all ω ∈ [ω′ − δ, ω′ + δ] \ (s′, s′). By setting δ ∈ (0, η) sufficiently small, by
continuity of KL, s̃ �δω̃′ ω for all s̃ ∈ [s−δ, s+δ], ω̃′ ∈ [ω′−δ, ω′+δ], and ω ∈ [ω′−δ, ω′+δ]\(s′, s′).
Thus under any Ω′′ ⊆ [ω′− δ, ω′+ δ] that is δ-dene in Ω′, since there exists ω̃′ ∈ Ω′′ ∩ [ω′− δ, ω′+ δ],
we have m(δω̃; Ω′′) ⊆ Ω′′ ∩ [s− δ, s+ δ] 6= ∅, which ensures S(Ω′′) ∩ [s− δ, s+ δ] 6= ∅.

Proof of Proposition 7. As observed in the proof of Proposition 6, each Sk(Ω) is written as a com-
pact interval [ωk, ωk]. By S∞(Ω) = {ω̂}, there exists K > 0 such that SK(Ω) ⊆ [ω̂ − η/2, ω̂ + η/2].
By Lemma 16, there exists δK > 0 such that SK(Ω′) ⊆ [ω̂− η, ω̂+ η] holds if SK−1(Ω′) is δK-dense
in SK−1(Ω) and included in [ωK−1 − δK , ωK−1 + δK ]. Inductively, given δk > 0 for k ∈ {2, . . . ,K},
Lemma 16 ensures the existence of δk−1 > 0 such that Sk−1(Ω′) is δk-dense in Sk−1(Ω) and in-
cluded in [ωk−1 − δk, ωk−1 + δk], whenever Sk−2(Ω′) is δk−1-dense in Sk−2(Ω) and included in
[ωk−2 − δk−1, ωk−2 + δk−1]. Therefore the desired conclusion S∞(Ω′) ⊆ SK(Ω′) ⊆ [ω̂ − η, ω̂ + η]

holds by taking δ = δ1.

G Extension to heterogeneous beliefs

We briefly describe an extension of our model that allows for profiles of beliefs. We omit all proofs
as they follow analogous arguments as the original results. There is a finite set I and for each i ∈ I
a finite state space Ωi. At each t = 0, 1, 2, . . ., there is a belief profile µ̄t = (µit)i∈I with µit ∈ ∆(Ωi).
Given any initial belief profile µ̄0 = (µi0)i∈I , where each µi0 has full support on Ωi, profile µ̄t evolves
according to the following Markov process on the product space

∏
i∈I ∆(Ωi).

At the end of each period t, a signal zt from a finite set Z is drawn according to the true
distribution Pµ̄t(·) ∈ ∆(Z), which can depend on the current belief profile. Following the realization
of zt, each belief µit is updated via Bayes’ rule to the belief µit+1 according to i’s perceived conditional

signal distributions: That is, µit+1(ωi) =
µit(ω

i)P̂ iµ̄t (zt|ω
i)∑

ω̃i∈Ωi µ
i
t(ω̃

i)P̂ iµ̄t (zt|ω̃
i)

for each ωi ∈ Ωi, where P̂ iµ̄(·|ωi) ∈

∆(Z) is i’s perceived distribution conditional on state ωi ∈ Ωi at belief profile µ̄ ∈
∏
i∈I ∆(Ωi).

We impose the following condition extending Assumption 1:

Assumption 2.

1. For each i ∈ I, ωi ∈ Ωi, and µ̄, suppPµ̄(·) ⊆ suppP̂ iµ̄(·|ωi).

2. For each i ∈ I, ωi, ω̃i ∈ Ωi, supµ̄,z∈suppPµ̄
P̂µ̄(z|ωi)
P̂µ̄(z|ω̃i)

<∞

3. Pµ̄(·) and P̂ iµ̄(·|ω) for each i ∈ I, ωi ∈ Ωi are continuous in µ̄.
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Let Pµ̄ denote the probability measure over realized sequences (µ̄t) under the initial belief profile
µ̄. Stability notions can be extended in the following manner:

Definition 3. Belief profile µ̄∗ is:

1. locally stable if for any γ < 1, there exists a neighborhood B 3 µ̄∗ such that Pµ̄[µ̄t → µ̄∗] ≥ γ
for each initial belief profile µ̄ ∈ B.

2. globally stable if Pµ̄[µ̄t → µ̄∗] = 1 for each initial belief profile µ̄.

3. unstable if there exists a neighborhood B 3 µ̄∗ such that Pµ̄[∃t, µ̄t 6∈ B] = 1 for each initial
belief profile µ̄ ∈ B \ {µ̄∗}.

The following extends Lemma 1 (instability of mixed beliefs).

Lemma 17. Take any j ∈ I and µj ∈ ∆(Ωj). Assume that there exist ωj , ω̃j ∈ supp(µj) such
that P̂ jµ̄(z|ωj) 6= P̂ jµ̄(z|ω̃j) and Pµ̄(z) > 0 for some z. Then µ̄ = (µj , µ−j) is unstable for all
µ−j ∈

∏
i 6=j ∆(Ωi).

For each µ̄ ∈
∏
i∈I ∆(Ωi), i ∈ I, and ωi, ω̃i ∈ Ωi, we define the KL-dominance order ωi %i

µ̄ ω̃
i

by ∑
z

Pµ̄(z) log

(
P̂ iµ̄(z|ω̃i)
P̂ iµ̄(z|ωi)

)
≤ 0,

and ωi �iµ̄ ω̃i if the inequality is strict. Likewise, given any p > 0, we define the p-dominance
order ωi %i,p

µ̄ ω̃i by ∑
z

Pµ̄(z)

(
P̂ iµ̄(z|ω̃i)
P̂ iµ̄(z|ωi)

)p
≤ 1,

and again write ωi �i,pµ̄ ω̃i if the inequality is strict.
The following result extends Theorems 1-2 (local stability and instability).

Theorem 5. Fix any ωi ∈ Ωi for each i ∈ I.

1. Belief profile (δωi)i∈I is locally stable if there exists p > 0 and a neighborhood B 3 (δωi)i∈I

such that for each j ∈ I,

ωj �j,pµ̄ ω̃j for all ω̃j 6= ωj and µ̄ ∈ B \ {(δωi)i∈I}.

2. Belief profile (δωi)i∈I is unstable if there exists a neighborhood B 3 (δωi)i∈I such that for some
j ∈ I,

ω̃j �jµ̄ ωj for some ω̃j 6= ωj and all µ̄ ∈ B \ {(δωi)i∈I}.
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To extend Theorem 3, we say that K ⊆
∏
i∈I ∆(Ωi) is a globally stable set of belief profiles

if Pµ̄[inf ν̄∈K ‖µ̄t − ν̄‖ → 0] = 1 for every initial belief profile µ̄. For each product of subsets∏
j∈I Ω̃j ⊆

∏
j∈I Ωj , let

Si

∏
j∈I

Ω̃j

 :=

ωi ∈ Ω̃i :6 ∃ω̃i ∈ Ω̃i s.t. ω̃i �iµ̄ ωi for all µ̄ ∈
∏
j∈I

∆(Ω̃j)

 .

for each i ∈ I. Then for Ω̄ :=
∏
j∈I Ωj , recursively define Si,1(Ω̄) := Si(Ω̄), Si,k+1(Ω̄) :=

Si(
∏
j∈I S

j,k(Ω̄)) for all k = 1, 2, . . ., and Si,∞(Ω̄) :=
⋂
k∈N S

i,k(Ω̄).

Theorem 6. The set
∏
i∈I ∆

(
Si,∞(Ω̄)

)
is globally stable.
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