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Abstract

Mixed logit or random coefficients logit models are used extensively in empirical

work while pure characteristic models feature in much of theoretical work. We provide

a theoretical analysis comparing and contrasting the two classes of models. First, we

show an approximation theorem that precisely characterizes the extent to which mixed

logit models can approximate pure characteristic models. In the process, we introduce

a general class of models that corresponds exactly to the closure of logit models. We

then present two conditions that highlight behavioral differences between mixed logit

and pure characteristic models. Both pertain to choice patterns relating to product

differentiation. The first is a substitutability condition that is satisfied by many pure

characteristic models (including the Hotelling model of horizontal differentiation) but

is violated by almost all mixed logit models. The second is a continuity condition that

is satisfied by all pure characteristic models but is violated by all mixed logit models.
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1 Introduction

Mixed logit models, also known as random coefficients logit models, have been widely used in
empirical work across different fields (McFadden (1973), Rust (1987) and Berry, Levinsohn
and Pakes (1995)). In these models, agents’ utilities contain iid extreme-value distributed
error terms that generate convenient expressions for choice probabilities which are useful for
estimation. On the other hand, much of the theoretical literature in decision theory and
industrial organization since Hotelling (1929) have focused on pure characteristic models
(Berry and Pakes (2007)). In these models, there are no iid error terms and utilities are
purely continuous functions of product characteristics. In this paper, we provide a theoretical
analysis comparing and contrasting these two classes of models.

Our main contribution is two-fold. First, we provide an approximation theorem that
precisely characterizes the extent to which mixed logit models can approximate pure char-
acteristic models. This sharpens existing approximation results (e.g. McFadden and Train
(2000)) and shows that a pure characteristic model can be approximated by mixed logit
models if and only if they belong to the same parametric family. Second, we highlight some
inherent differences between the two classes of models. We study two patterns of choice
behavior related to product differentiation that are natural in pure characteristic models
but cannot be easily accommodated by mixed logit models. These results demonstrate that
while mixed logit models are flexible enough to accommodate a wide range of behaviors,
they also impose certain limitations that impact estimation and counterfactual analysis.1

In our model, each choice option (i.e. product) corresponds to a vector in Rk where k is
the number of characteristics. We assume there is rich set of products with varying charac-
teristics. Following most empirical work, we focus on parametric families of polynomials up
to some degree d ≥ 1. For example, polynomials of degree 1 correspond to all linear functions
u (x) = β · x. The main approximation result (Theorem 1) states that a pure characteristic
model of degree d can and only can be approximated by mixed logits of degree d. For in-
stance, if the pure characteristic has degree d, then it is in general impossible to approximate
the model using mixed logits of degree d′ < d. In practice, this means that specifying the
correct specification of the degree of the parametric family of utilities is important for mixed
logit approximations.

1 Our results complement an empirical literature on well-known issues with mixed logit models. See the
discussion on related literature.
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In the process of showing this result, we also characterize the universal set of all mod-
els that can be approximated by logit and mixed logit models. These results may be of
independent interest to researchers. The closure of logit is a class of models which we call
lexicographic-logit; this is a lexicographic choice rule with logit tie-breaking. Lexicographic-
logit is an exceptionally rich class of models and includes some models (e.g. lexicographic
choice) that cannot be expressed as random utilities.

To see how this is useful for the approximation theorem, consider any pure character-
istic model that can be approximated by mixed logits of degree d = 1, i.e. linear utili-
ties u (x) = β · x. This must be a mixture of lexicographic-logits where the lexicographic
preferences correspond to linear utilities. Since utilities in a pure characteristic model are
continuous functions of product characteristics, logit tie-breaking can never occur as they
are discontinuous. This means that only the lexicographic utilities remain and this can be
rewritten as a pure characteristic model with linear (d = 1) utilities.

While mixed logit models are flexible and can approximate any pure characteristic model,
we show that there are inherent differences between the two classes of models. We highlight
these differences using two conditions on patterns in choice behavior. The first condition
we focus on is called convex substitutability. Consider two products x and y and a third
product z = λx + (1− λ) y with intermediary characteristics of the other two. Convex
substitutability says that the demand for x decreases if we replace y with z. The intuition
is that since x is more similar to z than to y, agents will substitute away from x when the
more similar product is introduced. This is natural condition that is is satisfied by many
pure characteristic models, including the classic Hotelling model; however, it is violated by
all mixed logit models excepting the special case of uniform choice (Theorem 2).

The second condition is called continuity in characteristics. Consider two products x and
y and series of products yn with characteristics that converge to those of y, i.e. y → yn in Rk.
Continuity in characteristics says that the demand for x when both y and yn are available
will eventually converge to the demand for x when only y is available. The intuition is that
agents will eventually be unable to distinguish between y and yn and treat both as the same
product. This condition is satisfied by all pure characteristic models but violated by all
mixed logit models (Theorem 3).

These conditions show stark differences in choice behavior between mixed logit and pure
characteristic models. How significant are these differences for practical purposes? On the
one hand, the discrepancies will eventually vanish as mixed logit approximations get ar-
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bitrarily close to the pure characteristic model. On the other hand, any mixed logit that
eventually emerges from estimation will violate these conditions. Since both conditions per-
tain to product differentiation, this would complicate counterfactual analysis when product
characteristic vary or new products are substituted. The significance and magnitude of
these violations will depend on the specific application, but they highlight potential issues
to consider when using mixed logit approximations.

We focus on the mixed logit due to its prominence in applied work but our results extend
to more generally to a larger class of models. For example, all models with iid error terms
would have difficulty satisfying convex substitutability and continuity in characteristics. Im-
portantly, not all classes of models useful for estimation necessarily violate these conditions;
we provide an example of a continuous probit model that satisfies both (see Example 7).
While iid error terms are useful for modeling unobserved heterogeneity, their convenience
imposes restrictions on choice behavior that may be undesirable. When deciding whether to
use one class of models versus another, one would need to weigh the importance of adhering
to certain choice behaviors with the burden of computational costs.

1.1 Related Literature

Luce (1959) provided an early characterization of multinomial logit. Recent papers in
decision theory have considered generalizations of logit. These include mixed logit (Gul,
Natenzon, and Pesendorfer (2014), Saito (2018)) and nested logit (Kovach and Tserenjigmid
(2020))). Cerreia-Vioglio, Maccheroni, Marinacci and Rustichini (2018a; 2018b) consider
the Luce axiom without positivity and obtain a model that is a discrete version of our
lexicographic-logit model. Fudenberg and Strzalecki (2015) consider dynamic extensions
of logit. Natenzon (2019) studies a Bayesian probit model. Chambers, Cuhadaroglu and
Masatlioglu (2020) consider a variation of the logit model in a social setting.

Theoretical work in decision theory has focused on pure characteristic models. These
include Gul and Pesendorfer (2006), Ahn and Sarver (2013), Lu (2016), Apesteguia, Ballester
and Lu (2017), Lu and Saito (2018), Duraj (2018), Frick, Iijima and Strzalecki (2019), Lu
(2019) and Lin (2019). Wilcox (2011) and Apesteguia and Ballester (2018) discuss issues
with respect to comparative statics between logit and pure characteristic models while Frick,
Iijima, and Strzalecki (2019) highlight issues associated with assessing option values. These
results are similar in spirit to ours highlighting the differences in choice behavior between
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the two class of models.
In the empirical literature, logit-based models have been widely applied for discrete choice

analysis. These include McFadden (1973), Rust (1987), Hotz and Miller (1993), Berry,
Levinsohn and Pakes (1995), Nevo (2001), Hendel and Nevo (2006), Gowrisankaran and
Rysman (2012) and Compiani (2019). McFadden and Train (2000) show that that mixed logit
models can approximate any pure characteristic model. Our result sharpens their result and
captures the precise extent of this approximation. Narita and Saito (2021) consider the case
where the set of characteristics is finite. They provide a necessary and sufficient condition for
when mixed logit can approximate random utility models. They also provide an algorithm
for constructing mixed logit models that can approximate random utility arbitrarily well
when the condition is satisfied; when the condition is not satisfied, they find that the size of
the approximation error is large.

Other papers comparing logit-based models with pure characteristics models (also known
as hedonic models) include Anderson, DePalma and Thisse (1989), Petrin (2002), Bajari and
Benkard (2004; 2005), Ackerberg and Rysman (2005) and Berry and Pakes (2007). They
consider the implications on price elasticities and welfare when new products are introduced.
Logit-based models may imply too much “taste for product” while pure characteristics models
may imply competition that is too localized. Our results on convex substitutability and
continuity in characteristics are similar in spirit and highlight new patterns in choice behavior
differentiating the two classes of models.

2 Setup

There are k ≥ 1 characteristics and we associate each choice option (i.e. product) with a
vector x ∈ X ⊂ Rk of characteristics. We assume that there is rich variation in the set
of characteristics. Formally, X is full-dimensional, compact and convex. A menu A ⊂ X

is a finite set of products and let A denote the set of all menus. A stochastic choice ρ is
a mapping on A such that for any menu A ∈ A, ρA (·) is a probability distribution over
elements in A. For binary menus, A = {x, y}, we use the simpler notation ρ (x, y) = ρA (x).
The set of all stochastic choice can be thus defined as

P =
∏
A∈A

∆A
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where ∆A is the set of all probability distributions over A. We endow P with the product
topology.

We focus on utilities that are continuous in product characteristics. Formally, let U ⊂ RX

denote the set of all continuous utility functions u : X → R. We say u ∈ U is a polynomial
of degree d ≥ 1 if it is a multivariate polynomial where every term has exponents that sum
up to at most d, i.e.

u (x1, . . . , xk) =
∑

mi
1+···+mi

k
≤d
βix

mi
1

1 · · ·x
mi

k
k

for some β ∈ Rm(k,d) where m (k, d) = ∑d
i=1

(k+i−1)!
i!(k−1)! . For example, if k = d = 2, then

u (x1, x2) = β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2

In general, β represents the coefficients for different characteristics including higher-order
and interaction terms. Constant terms β0 are excluded as they have no bearing on any
of the subsequent analysis. Given any x ∈ X, let x∗ denote the corresponding vector in
polynomial space X∗ so

u (x) = β · x∗.

Note that if d = 1, then x = x∗ and u (x) = β ·x is just a linear function. Let Ud ⊂ U denote
the set of all polynomials of degree d.

Two prominent classes of models are pure characteristic and mixed logit.

Definition 1. (Pure characteristic) A stochastic choice ρ is pure characteristic if there exists
a distribution µ on U such that

ρA (x) = µ ({u ∈ U : u (x) ≥ u (y) for all y ∈ A}) .

It is pure characteristic of degree d if u ∈ Ud a.s.

Definition 2. (Mixed logit) A stochastic choice ρ is mixed logit if there exists a distribution
ν on U such that

ρA (x) =
∫
U

ev(x)∑
y∈A ev(y)dν

It is mixed logit of degree d if v ∈ Ud a.s.

A special case of mixed logit is of course when the distribution µ = δu is degenerate.
In this case, we obtain standard logit where v is its systematic utility. We summarize this
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below.

Definition 3. (Logit) A stochastic choice ρ is logit if there exists a v ∈ U such that

ρA (x) = ev(x)∑
y∈A ev(y)

It is logit of degree d if v ∈ Ud.

Both pure characteristic and mixed logit belong to a more general class of random utility
models. To see why, note that we can rewrite the mixed logit model as

ρA (x) = P ({v (x) + ε (x) ≥ v (y) + ε (y) for all y ∈ A})

where v (·) are distributed according to ν and ε (·) are extreme-valued distributed and iid
across products. On the other hand, the pure characteristic model is a random utility where
the utilities u (·) are continuous in product characteristics.

3 Mixed Logit Approximations of Pure Characteristic Models

3.1 An Approximation Theorem

This section provides a precise characterization of the extent to which mixed logit models
can be used to approximate any pure characteristic model. McFadden and Train (2000)
showed that mixed logit models can be used to approximate any pure characteristic model.
We translate their result to our setup. Recall that P is endowed with the product topology
so ρn → ρ iff ρnA → ρA for all A ∈ A.

Proposition 1. For any pure characteristic ρ, there exists a sequence of mixed logits ρn

such that ρn → ρ.

Proof. See Appendix. �

While mixed logit models owe much of their popularity to their computability, the above
result also provides some theoretical justification for their use. In practice however, a re-
searcher will usually commit to some class of mixed logit models for approximation. For
example, suppose the researcher uses mixed logit of degree d = 1, i.e. mixed logit models
where the systematic utility u (x) = β · x is linear. What is the set of all pure characteristic

6



models that this can approximate? While this clearly includes pure characteristic models
with linear utilities, could it include more? It turns out the answer is no.

The next result provides a precise characterization of the extent to which mixed logit
models can be used to approximate pure characteristic models. We say a stochastic choice
ρ can be approximated by a set of stochastic choice models if it is in the closure of that set.2

Theorem 1. For any pure characteristic ρ, the following are equivalent:

(1) ρ is pure characteristic of degree d

(2) ρ can be approximated by mixed logit of degree d.

Proof. See Appendix. �

The main implication of this result is that it is important to correctly specify the degree
of the pure characteristic model. For example, suppose the pure characteristic model has
degree 3 where third-order terms matter. In this case, it would be generally impossible to
approximate the pure characteristic model if the researcher only uses mixed logits of degree
d < 3. A special case when a lower-degree mixed logit would suffice is if the utilities in the
pure characteristic model is exactly a monotone transformation of a lower-degree polynomial.
For instance, if the utilities in the pure characteristic model satisfy

u (x) = β1x
3
1 + β2x

2
1x2 + β3x1x

2
2 + β4x

3
2 = (γ1x1 + γ2x2)3

where β1 = γ3
1 , β2 = 3γ2

1γ2, β3 = 3γ1γ
2
2 and β4 = γ3

2 . In this case, mixed logits of degree 1
can be used to approximate this model.

Theorem 1 sharpens the result from McFadden and Train (2000) in two ways. First, while
they only provide sufficiency, we provide necessity as well as demonstrated in the example
above. Second, our result is more precise about the class of utility functions that can be
approximated (i.e. the degree of the polynomial utility). This has a practical importance
for empirical analysis given that the majority of empirical work assumes d = 1.

3.2 Closure of Logit: Lexicographic-logit

In order to demonstrate the reasoning behind Theorem 1, we first characterize the universal
set of all models that can be approximated by (mixed) logit. This characterization may

2 Recall that closure here is with respect to the product topology on P.
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be of independent interest to researchers. It shows the full extent in which (mixed) logit
models can be used to approximate a rich class of models including some that are not pure
characteristic or even random utility. We begin with an example of a model that is the limit
of logits.

Example 1 (Lexicographic choice rule). Let X = [0, 1]2 ⊂ R2 and d = 1. Let ρn be logit
with βn = (n2, n) and ρ be the limit of the logits ρn. Thus,

ρA (x) = lim
n

eβn·x∑
y∈A eβn·y

=
∑
y∈A

elimn(n2(y1−x1)+n(y2−x2))
−1

In this case, ρ corresponds to the lexicographic preference � on X where x � y if x1 > y1 or
x1 = y1 and x2 > y2. To see why, note that if x1 > y1 or x1 = y1 and x2 > y2, then

lim
n

(
n2 (y1 − x1) + n (y2 − x2)

)
= −∞

If this is true for all y ∈ A, then ρA (x) = 1. On the other hand, if y � x for some y ∈ A,
then ρA (x) = 0 as desired. Thus, ρ is a lexicographic choice rule.

The above example shows how lexicographic choice rules is one class of models that can
be approximated by logit models. Note that in that example, ρ is not pure characteristic or
even a random utility. To see why, suppose otherwise and ρ is a random utility model with
some distribution over all utility functions u : X → R. Thus, for each distinct x, y ∈ X, we
have x � y if u (x) > u (y) with probability one. If we define the average utility ū (x) :=
E [u (x)], then ū represents �. This yields a contradiction since it is well-known that no
utility representation exists for lexicographic preferences. Thus, although every logit is a
random utility, the closure of logit includes models that cannot be expressed as a random
utility.3

While mixed logit can approximate pure characteristic models and lexicographic choice
rules, what is the full class of models that can be approximated? We now characterize that
set. Consider a collection of polynomials (u1, . . . , ut) where ui ∈ Ud for all i ∈ {1, . . . , t}.
Let (β1, . . . , βt) be their corresponding coefficients so ui (x) = βi · x∗ for all i. We say the
collection is orthogonal if βi · βj = 0 for all i, j ∈ {1, . . . , t}.

3 If we allow for only finite-additive distributions or non-measurable utilities, then one could represent lex-
icographic choice rules using some “random utility” (see Cohen (1980)). However, given that a lexicographic
preference has no utility representation, it would be odd for it to have a random utility representation.
Moreover, this would exclude the possibility of integrating utilities (e.g. calculating social surplus).
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Given ω = (u1, . . . , ut), let �ω be its induced lexicographic preference relation on X. In
other words, x ∼ω y if ui (x) = ui (y) for all i ∈ {1, . . . , t} and x �ω y if ui (x) > ui (y)
for some i ≤ t and uj (x) = uj (y) for all j < i. Let Ωd be the set of all orthogonal
polynomials ω = (u1, . . . , ut) for some t ≤ m (k, d). Under lexicographic-logit, choices follow
a lexicographic preference relation where ties are broken according to logit.

Definition 4. ρ is lexicographic-logit of degree d if there exist ω ∈ Ωd and v ∈ Ud such that

ρA (x) = 1 {x �ω y for all y ∈ A} ev(x)∑
y∈A,y∼ωx e

v(y)

The following result shows that the closure of logit is exactly lexicographic-logit.

Proposition 2. The following are equivalent:

(1) ρ is lexicographic-logit of degree d

(2) ρ can be approximated by logit of degree d.

Proof. See Appendix. �

How about for mixed logit? We now define the mixed lexicographic-logit model.

Definition 5. ρ is mixed lexicographic-logit of degree d if there exists a distribution ν on
Ωd × Ud such that

ρA (x) =
∫

Ωd×Ud

1 {x �ω y for all y ∈ A} ev(x)∑
y∈A,y∼ωx e

v(y)dν

The following result parallels Proposition 2 and shows that mixed lexicographic-logit is
exactly the set of all stochastic choices that can be approximated by mixed logit. In fact, it is
the smallest set of models containing logit that is closed under mixing and approximations.

Proposition 3. The following are equivalent:

(1) ρ is mixed lexicographic-logit of degree d

(2) ρ can be approximated by mixed logit of degree d.

Proof. See Appendix. �

Mixed lexicographic-logit includes a rich class of models. When ties are universal, i.e.
x ∼ω y for all x, y ∈ X a.s., this reduces to mixed logit. When ω only consists of a single
polynomial and ties never occur, this reduces to pure characteristic. The following are a few
additional special cases:
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Example 2 (Mixed lexicographic). Let ω = (u1, . . . , ut) for t > 1 and suppose ties never
occur, i.e. x 6∼ω y for all x, y ∈ X a.s. This corresponds to a population of agents where each
agent chooses according to a lexicographic preference. As special case of course is Example
1 above.

Example 3 (Mixture of logit and pure characteristic). Let ν1 correspond to a mixed logit
model, ν2 correspond to a pure characteristic model and ν = αν1 + (1− α) ν2 for a ∈ (0, 1).
Here, α parametrizes the degree of iid noise in the model. Note that this is neither a mixed
logit model nor a pure characteristic model.

Example 4 (Generalized nested-logit). Let A = {x, y, z} and consider u1, u2 ∈ Ud such that
u1 (x) = u1 (y) > u1 (z) and u2 (x) < u2 (y) = u2 (z). Suppose ν is such that (ω, v) = (u1, v1)
with probability α and (ω, v) = (u2, v2) with probability 1− α. In this case,

ρA (x) = α
ev1(y)

ev1(y) + ev1(x) + (1− α) ev2(y)

ev2(y) + ev2(z)

This corresponds to an agent who either picks the “nest” {x, y} in the first-stage followed by
logit with v1 in the second stage or picks the “nest” {y, z} followed by logit v2. If we interpret
the nests as consideration sets, then u1 and u2 correspond to salience measures.

Finally, we end this section with a brief outline of how Proposition 3 can be used to
prove Theorem 1. Suppose ρ is a pure characteristic model that can also be approximated
by mixed logits of degree d = 1. Proposition 3 implies that ρ is mixed lexicographic-logit of
degree d = 1. We first show that x ∼ω y can never occur with positive probability so logit
tie-breaking never occurs. Let yn =

(
1− 1

n

)
y + 1

n
x and note that since ω ∈ Ω1, x �ω y iff

x �ω yn. Let An = {x, y, yn} and taking the limit as n→∞, we have

lim
n
ρAn (x) = lim

n

∫
Ω1×Rk

1 {x �ω y}
eβ·x

eβ·x + 1 {y ∼ω x} (eβ·y + eβ·yn)dν

=
∫

Ω1×Rk
1 {x �ω y}

eβ·x

eβ·x + 1 {y ∼ω x} 2eβ·y dν

≤
∫

Ω1×Rk
1 {x �ω y}

eβ·x

eβ·x + 1 {y ∼ω x} eβ·y
dν = ρ (x, y)

Since ρ is also pure characteristic, limn ρAn (x) = ρ (x, y) (see Theorem 3.1 below) so it must
be that y ∼ω x with measure zero. We can thus write

ρA (x) = ν ({ω ∈ Ω1 : x �ω y for all y ∈ A})
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It is straightforward to show that this satisfies the random linear utility axioms of Gul and
Pesendorfer (2006) so ρ is pure characteristic of degree d = 1. The full proof of Theorem 1
extends this argument for d > 1.

4 Contrasting Mixed Logit and Pure Characteristic Models

This previous section focuses on the extent to which mixed logit models can be used to
approximate any pure characteristic model. In this section, we focus on two behavioral
differences between the two classes of models. Both pertain to patterns in choice behavior
relating to product differentiation. Section 4.1 studies a substitutability condition that is
satisfied by many pure characteristic models but is violated by almost all mixed logit models.
Section 4.2 studies a continuity condition that is satisfied by all pure characteristic models
but is violated by all mixed logit models. The main purpose of this section is to illustrate
patterns of choice behavior that clearly separate mixed logit models from pure characteristic
models.

4.1 Convex Substitutability

This section introduces a substitutability condition that is natural in many pure character-
istic models but cannot be accommodated by almost all mixed logit models. To illustrate,
consider an example from the classic Hotelling (1929) model of horizontal differentiation.

Example 5 (Hotelling). Each choice alternative corresponds to a product x = (θ, p) ∈ R2

where θ measures quality and p is its price. Each agent i has utility

ui (θ, p) = αi − λi (θ − βi)2 − p

This is a pure characteristic model where ρ (x, y) is the demand of product x over y. Given
x = (θ, p) and y = (θ′, p′), let z = 1

2x + 1
2y denote an intermediary product that is a convex

mixture of the characteristic and price of the two products. If an agent prefers x to z, then
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he must also prefer x to y. To see why, note that

ui (z) = αi − λi
(1

2θ + 1
2θ
′ − βi

)2
− 1

2p−
1
2p
′

≥ αi −
1
2λi (θ − βi)

2 − 1
2λi (θ

′ − βi)2 − 1
2p−

1
2p
′

≥ 1
2ui (x) + 1

2ui (y)

so ui (x) ≥ ui (z) implies ui (x) ≥ ui (y). This means that the demand of x will increase if
we replace z with y, i.e.

ρ
(
x,

1
2x+ 1

2y
)
≤ ρ (x, y) .

Intuitively, the product z is more “similar” (in a convex sense) to x than y is to x and
demand for x increases if we replace z with y.

We can generalize this substitutability condition as follows.

Definition 6. ρ satisfies convex substitutability if ρA∪{y} (x) ≥ ρA∪{λx+(1−λ)y} (x) for all
λ ∈ (0, 1).

Convex substitutability says that demand for x increases when the other alternatives be-
come less similar. Intuitively, this is because alternatives that are similar serve as substitutes.
Note that similarity here is measured in terms of convexity in the space of characteristics
Rk.

In the Hotelling model, convex substitutability is satisfied because all utilities are concave.
In fact, convex substitutability is satisfied as long as all the utilities in the pure characteristic
model are quasiconcave.4 We say a pure characteristic model is quasiconcave if its utility
functions u : X → R are quasiconcave a.s.

Theorem 2.1. Any quasiconcave pure characteristic ρ satisfies convex substitutability.

Proof. Consider distinct x, y ∈ X and let z = λx + (1− λ) y. Since u is quasiconcave, if
u (x) > u (z), then u (x) ≥ u (y). Since ties occur with measure zero, this means that

ρA∪{z} (x) = µ ({u ∈ U : u (x) > u (w) for all w ∈ A ∪ {z}})

≤ µ ({u ∈ U : u (x) > u (w) for all w ∈ A ∪ {y}}) = ρA∪{y} (x)

as desired. �
4 Convex substitutability is related to convexity conditions in Apesteguia, Ballester and Lu (2017) and

Lu (2019).
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Note that the proof soley relies on utilities being quasiconcave and holds even if utilities
are not continuous. A special case of quasiconcave utility is of course linear utility, for
example, the case of expected utility for choice under risk.

Example 6 (Random expected utility). Each alternative corresponds to a lottery x ∈ Rk
+

over k prizes where ∑j xj = 1. Each agent i is an expected utility maximizer with utility

ui (x) =
∑
j

xjũij

where ũij is agent i’s Bernoulli utility of prize j ∈ {1, . . . , k}. This is the random expected
utility model of Gul and Pesendorfer (2006). Since ui (x) ≥ ui (λx+ (1− λ) y) iff ui (x) ≥
ui (y), convex substitutability is in fact satisfied with equality.

While convex substitutability is satisfied by many commonly used pure characteristic
models, we now show that it cannot be accommodated by almost all mixed logit models.
The one exception is when the stochastic choice is uniform, i.e. ρA (x) = 1/ |A|,

Theorem 2.2. Any non-uniform mixed logit ρ violates convex substitutability.

Proof. Note that by applying convex substitutability repeatedly, we obtain that

ρA (x) ≥ ρλx+(1−λ)A (x)

for all λ ∈ (0, 1). Since ρ is mixed logit, this means that
∫
U

ev(x)∑
y∈A ev(y)dν = ρA (x) ≥ ρλx+(1−λ)A (x) =

∫
U

ev(x)∑
y∈A ev(λx+(1−λ)y)dν

Now, taking the limit as λ→ 1, we have
∫
U

ev(x)∑
y∈A ev(y)dν ≥

∫
U

ev(x)

nev(x)dν = 1
n

and this is true for any x ∈ A. Now, suppose the inequality is strict for some x ∈ A. Then

1 =
∑
x∈A

ρA (x) =
∑
x∈A

(∫
U

ev(x)∑
y∈A ev(y)dν

)
>
∑
x∈A

1
n

= 1

yielding a contradiction. Thus, ρ must be uniform choice. �

Convex substitutability can be attractive for various reasons. Normatively, if one believes
that the Hotelling model for instance is the true model, then agents should exhibit such
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behavior. Descriptively, convex substitutability has certain appeal as it captures the intuitive
notion that similar products crowd out demand. The above result shows that barring uniform
choice, no mixed logit model can accommodate this condition. This is a novel restriction on
allowable patterns of choice behavior under mixed logit.

What are the practical implications? Consider a researcher who is using mixed logit
models to approximate the Hotelling model. Theorem 2.2 says that all models used for
approximation will violate a property that is natural in the Hotelling model. How significant
is this violation? On the one hand, this discrepancy will eventually vanish as approximations
get arbitrarily close. On the other hand, any mixed logit that eventually emerges from
estimation will violate convex substitutability. This would complicate counterfactual about
what would happen to demand as alternatives become more or less similar. Ultimately,
the significance and magnitude of this violation will depend on the specific application, but
Theorem 2.2 highlights a potential issue for mixed logit approximations.

Violations of convex substitutability extend more generally to models beyond mixed
logit. In fact, any model with additive iid error terms would have difficulty satisfying the
condition. The illustrate, consider a model where X ⊂ R and ε (·) represents iid error terms.
The probability of choosing x over y is

ρ (x, y) = P {v (x) + ε (x) ≥ v (y) + ε (y)}

= P {Z ≤ v (x)− v (y)}

= F (v (x)− v (y))

where Z is the distribution of ε (y)−ε (x) with cdf F . This is known as a Fechnarian model in
the literature (Debreu (1958), Davidson and Marschak (1959)). Assuming differentiability,
we have

∂

∂y
ρ (x, y) = −f (v (x)− v (y)) v′ (y)

which is positive iff v′ (y) ≤ 0. Since this does not depend on whether x > y or x < y, convex
substitutability cannot be satisfied.

Can convex substitutability be satisfied when error terms are not iid? The following
shows a continuous version of probit where error terms are correlated that satisfies convex
substitutability.

Example 7 (Continuous probit). Consider a continuous version of the probit model from
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Hausman and Wise (1978). Let X ⊂ R and consider a pure characteristic model where

u (x) = −x2 +W (x)

where W is a one-dimensional Brownian motion. For x < y, we have u (x) ≥ u (y) iff

y2 − x2 ≥ W (y)−W (x)

y2 − x2 ≥ (y − x)Z

x+ y ≥ Z

where Z is the standard Normal distribution. Clearly, as y increases, ρ (x, y) also increases.
On the other hand, for y < x, u (x) ≥ u (y) iff x+ y ≤ Z so ρ (x, y) decreases as y increases.
It is easy to see that convex substitutability is satisfied.

Error terms in the continuous probit model are correlated depending on how similar
alternatives are. By decreasing the variance of these error terms, continuous probit models
can be used to approximate the Hotelling model. In contrast to mixed logit models, this has
the advantage that convex substitutability will be satisfied for all models along the path of
approximation and depending on the specific application, this could be a desirable feature.

4.2 Continuity in Characteristics

This section introduces a continuity condition that is satisfied by all pure characteristic
models but violated by all mixed logit models. To illustrate, first consider the classic red-
bus/blue-bus example (or Debussy versus Beethoven as formulated by Debreu (1960)).

Example 8 (Red-bus/blue-bus). Consider the choice of transportation alternatives and let
x correspond to traveling by car while y correspond to traveling by a red bus. Suppose car
and red bus both have equal market share so ρ (x, y) = 1

2 . Consider introducing a blue bus y′.
Supposing agents are indifferent to color, ρ (y, y′) = 1

2 so Luce’s independence of irrelevant
alternatives (IIA) condition implies that ρ{x,y,y′} (x) = 1

3 . In reality, one would expect the car
market share to remain close to 50% in violation of IIA.

The red-bus/blue-bus example illustrates a limitation of logit. Mixed logit models are not
bound by IIA and can accommodate such choice patterns. However, we now present a new
choice pattern that no mixed logit model can accommodate. Suppose we introduce buses yn
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with colors that are increasingly closer to red. Eventually, yn will be indistinguishable from
y, so the car market share should approach 50%. In other words,

ρ{x,y,yn} (x)→ ρ (x, y)

We generalize this continuity condition as follows.

Definition 7. ρ satisfies continuity in characteristics if ρA∪{yn} (x) → ρA (x) for all yn →
y ∈ A\ {x}.

Intuitively, as alternative yn becomes increasingly similar to alternative y, the two alter-
natives will eventually be indistinguishable. When evaluating choice, one can replace two
indistinguishable alternatives with the single alternative y in the limit.

In a pure characteristic model, the probability of choosing x over y is given by the
probability that the utility of x is greater than that of y. Since utilities are continuous, the
utility of yn will converge to the utility of y as yn converges to y. As a result, continuity in
characteristics will be satisfied.

Theorem 3.1. Any pure characteristic ρ satisfies continuity in characteristics.

Proof. See Appendix. �

This applies to the Hotelling model in Example 5 and the random expected utility model
in Example 6. It would also apply in models where the set of characteristics is not convex (e.g.
Salop (1979)) as long as utilities are continuous in product characteristics. While continuity
in characteristics is satisfied by all pure characteristic models, it cannot be accommodated
by any mixed logit model.

Theorem 3.2. Any mixed logit ρ violates continuity in characteristics.

Proof. Consider distinct x, y ∈ A and a sequence yn → y. Let An = A ∪ {yn}. Since ρ is a
mixed logit,

lim
n
ρAn (x) = lim

n

∫
U

ev(x)∑
z∈A ev(z) + ev(yn)dν

=
∫
U

ev(x)∑
z∈A ev(z) + ev(y)dν

<
∫
U

ev(x)∑
z∈A ev(z)dν = ρA (x)

Thus, limn ρAn (x) < ρA (x) for any such A and yn → y. �
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The above proof illustrates that any mixed logit model not only violates continuity in
characteristics but it violates it in a specific direction. When yn converges to y, the market
share of x in {x, y, yn} converges to a limit that is strictly less than its market share in {x, y}.
The reason is that logit errors force individual market shares for alternatives no matter how
similar they are to each other. This is related to well-known limitations of mixed logit models
(e.g. Berry and Pakes (2007)) and Theorem 3.2 formalizes such intuition.

The above results imply the following corollary.

Corollary 1. No mixed logit model is pure characteristic.

Proof. Follows from Theorem 3. �

Mixed logit and pure characteristic models belong to two very different classes of models;
Corollary 1 shows that they have empty intersection. Although Theorem 1 guarantees that
a researcher can always approximate pure characteristic models using mixed logit models,
this approximation will always be from “outside” the set of pure characteristic models.

What does this mean in practice? Like the results from Section 4.1, the magnitude of
these issues depend on the application at hand. Note that the continuous probit model
in Example 7 is a pure characteristic model and thus satisfies continuity in characteristics.
Theorem 3 illustrate one behavioral condition that separates the two class of models but
there may be other differences that would have non-trivial implications for estimation and
counterfactual analysis. Ultimately, when deciding whether to use one class of models versus
another for estimation, one would need to weigh the importance of these choice patterns
versus the burden of computational costs.
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Appendix

A Preliminaries

Define the space
V :=

∏
A∈A

RA

and note that P ⊂ V . We endow V also with the product topology. Note that P is compact
by Tychonoff’s theorem. Since V is a Hausdorff space (Theorem 19.4 of Munkres (2000)), P
is also closed (Lemma 2.32 of Aliprantis and Border (2006), henceforth AB). Although the
space V is neither metrizable or even first-countable, the next lemma shows that it is locally
convex which allows us to use separating hyperplane theorems.

Lemma 1. V is a locally convex topological vector space.

Proof. Since RA is a topological vector space for every A ∈ A, V is a topological vector
space by Theorem 5.2 of AB. Consider the family of seminorms (rA)A∈A where rA : V → R
is such that

rA (τ) = |τA|

where |·| is the Euclidean norm in RA. Since this family of seminorms generates the product
topology, V is locally convex. �

Throughout this appendix, let m = m (k, d), and for every x ∈ X, let x∗ denote the
corresponding vector in polynomial space X∗ ⊂ Rm. We define the following subsets of P :

• Ppc is the set of pure characteristic and Ppcd is the set of pure characteristic of degree d

• P log is the set of logit and P logd is the set of logit of degree d

• Pmlog is the set of mixed logit and Pmlogd is the set of mixed logit of degree d

• P lexd is the set of lexicographic-logit of degree d

• Pmlexd is the set of mixed lexicographic-logit of degree d

Also let cl (P ′) denote the closure of any subset P ′ ⊂ P . Note that since P is closed,
cl (P ′) ⊂ P is compact.
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B Proof of Proposition 1

We first prove the following lemma.

Lemma 2. For A ∈ A and u : X → R such that u (x) 6= u (y) for all distinct x, y ∈ A,

lim
n

enu(x)∑
y∈A enu(y) = 1 {u (x) > u (y) for all y ∈ A}

Proof. Since u (x) 6= u (y) for all distinct x, y ∈ A, we can rewrite

enu(x)∑
y∈A enu(y) = 1

1 +∑
y∈A\x en(u(y)−u(x))

Consider n→∞. First, suppose u (x) > u (y) for all y ∈ A\x. In this case, en(u(y)−u(x)) → 0
for all y ∈ A\x so the expression above converges to 1. On the other hand, suppose there
exists some y ∈ A such that u (y) > u (x). In this case, en(u(y)−u(x)) → ∞ so the expression
converges to 0. The result follows. �

We now prove Proposition 1. Let ρ ∈ Ppc with distribution µ and define

ρnA (x) =
∫
U

enu(x)∑
y∈A enu(y)dµ

so ρn ∈ Pmlog. We will show that ρn → ρ. Fix some A ∈ A and define

UA = {u ∈ U : u (x) 6= u (y) for all distinct x, y ∈ A}

Since ties never occur for random utility models, µ (UA) = 1. Now, by Lemma 2 and
dominated convergence,

lim
n
ρnA (x) = lim

n

∫
U

enu(x)∑
y∈A enu(y)dµ = lim

n

∫
UA

enu(x)∑
y∈A enu(y)dµ

=
∫
UA

lim
n

enu(x)∑
y∈A enu(y)dµ =

∫
UA

1 {u (x) > u (y) for all y ∈ A} dµ

= µ ({u ∈ UA : u (x) > u (y) for all y ∈ A})

= µ ({u ∈ U : u (x) ≥ u (y) for all y ∈ A}) = ρA (x)

as desired.

19



C Proof of Theorem 3.1

First, we define continuity for stochastic choice. We endow A with the Hausdorff metric.

Definition 8. ρ satisfies continuity if ρAk
→ ρA for all Ak → A.

We now prove a stronger version of Theorem 3.1 below.

Theorem 3.1∗. Any pure characteristic ρ satisfies continuity.

Let ρ ∈ Ppc with distribution µ. Consider Ak → A. Note that u (x) = u (y) with
µ-measure zero. Now, define

I :=
⋃

{x,y}⊂Ak∪A
{u ∈ U : u (x) = u (y)}

which is measurable and µ (I) = 0. Let U∗ := U\I so µ (U∗) = 1. Let µ∗ be the restriction
of µ on U∗.

We will now define random variables ξk : U∗ → X and ξ : U∗ → X that have distributions
ρAk

and ρA respectively. For each Ak, let ξk : U∗ → X be such that

ξk (u) := arg max
x∈Ak

u (x)

and define ξ similarly for A. Note that these are well-defined because there exists a unique
maximizer for every u ∈ U∗. Now, for any measurable set E ⊂ X,

ξ−1
k (E) = {u ∈ U∗ : ξk (u) ∈ E ∩ Ak}

=
⋃

x∈E∩Ak

{u ∈ U∗ : u (x) > u (y) for all y ∈ Ak}

which is measurable. Hence, ξk and ξ are random variables. Note that

µ∗
(
ξ−1
k (E)

)
=

∑
x∈E∩Ak

µ∗ {u ∈ U∗ : u (x) > u (y) for all y ∈ Ak}

=
∑

x∈E∩Ak

µ {u ∈ U∗ : u (x) > u (y) for all y ∈ Ak}

= ρAk
(E ∩ Ak) = ρAk

(E)

so ρAk
and ρA are the distributions of ξk and ξ respectively. Since every u ∈ U∗ ⊂ U is

continuous, by the Maximum Theorem, ξk (u) = arg maxx∈Ak
u (x) is upper hemicontinuous

in Ak and thus continuous as ξk is singleton-valued. Since Ak → A, ξk → ξ µ∗-a.s. and since
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a.s. convergence implies convergence in distribution, ρAk
→ ρA as desired.

D Proof of Proposition 2

We will establish Proposition 2 by breaking it down into the following two propositions. The
first shows that ρ is a sequential limit of logits of degree d if and only if it is lexicographic-logit
of degree d.

Proposition 2.1. ρ ∈ P lexd iff there exists a sequence ρn ∈ P logd such that ρn → ρ.

Since P is not metrizable under the product topology, it may not be sequential. However,
the second proposition shows that the sequential limit points of logit coincides with the
closure of logit.

Proposition 2.2. ρ ∈ cl
(
P logd

)
iff there exists a sequence ρn ∈ P logd such that ρn → ρ.

Together, these two propositions establish Proposition 2.

D.1 Proof of Proposition 2.1

We first prove the following useful lemma.

Lemma 3. Consider any sequence βn ∈ Rm.

(1) If lim supn |βn| <∞, then there exists a subsequence βi such that βi → β.

(2) If lim supn |βn| = ∞, then there exists a subsequence βi such that βi

|βi| → γ 6= 0.
Moreover, for any z ∈ Rm, (i) γ · z > 0 implies limi βi · z = ∞, and (ii) γ · z < 0
implies limi βi · z = −∞

Proof. First consider (1). Define

B :=
{
β ∈ Rm : |β| ≤ lim sup

n
|βn|

}
Since βn ∈ B and B is compact, there must exist a convergence subsequence βi such that
βi → β ∈ B as desired.

Now, consider (2). Note that we can find a subsequence βj such that |βj| → ∞. Let
S ⊂ Rm be the unit sphere and let β̂j = βj

|βj | ∈ S be the normalized unit vector. Since S
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is compact, there must exist a convergent subsequence βi such that β̂i → γ ∈ S as desired.
Since |βi| → ∞, if γ · z > 0, then

lim
i
βi · z = lim

i
|βi|

(
β̂i · z

)
=∞

The case for γ · z < 0 is symmetric. �

We now prove Proposition 2.1. Let ρn ∈ P logd with βn ∈ Rm and ρn → ρ. Now,

ρA (x) = lim
n
ρnA (x) = lim

n

eβn·x∗∑
y∈A eβn·y∗

=
∑
y∈A

elimn βn·(y∗−x∗)

−1

Since ρ (y, x) is well-defined, so is limn βn · (y∗ − x∗) on R̄, the extended real line. Let

Z := {y∗ − x∗ : x, y ∈ X} ⊂ Rm

First, suppose lim supn |βn| < ∞ so by Lemma 3, there exists a convergent subsequence
βi → β ∈ Rm. Thus,

ρA (x) = eβ·x
∗∑

y∈A eβ·y
∗ = eu(x)∑

y∈A eu(y)

where u ∈ Ud. This means that ρ ∈ P logd ⊂ P lexd as desired.
Now, suppose lim supn |βn| = ∞ so by Lemma 3, there exists a convergent subsequence

β̂i := βi

|βi| → γ1 ∈ Rm. Moreover, for any z ∈ Z, limn βn · z = limi βi · z =∞ if γ1 · z > 0 and
limn βn · z = −∞ if γ1 · z < 0. Let H1 ⊂ Rm denote the (m− 1)-dimensional hyperplane
such that γ1 · z = 0 for all z ∈ Rm. Thus

ρA (x) = 1 {γ1 · x∗ ≥ γ1 · y∗ for all y ∈ A}
 ∑
y∈A,y∗−x∗∈H1

elimi βi·(y∗−x∗)

−1

Let T1 : Rm → H1 be the projection mapping onto H1, that is

T1 (β) := β − (β · γ1) γ1

Now, for any z ∈ H1,

β · z = (T1 (β) + (β · γ1) γ1) · z = T1 (β) · z
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We thus have

ρA (x) = 1 {γ1 · x∗ ≥ γ1 · y∗ for all y ∈ A}
 ∑
y∈A,y∗−x∗∈H1

elimi T1(βi)·(y∗−x∗)

−1

Now, for any y∗−x∗ ∈ H1, so we can repeat the same arguments as above. If lim supi |T1 (βi)| <
∞, then by Lemma 3, we can assume T1 (βi)→ β ∈ Rm and

ρA (x) = 1 {γ1 · x∗ ≥ γ1 · y∗ for all y ∈ A}
eβ·x

∗∑
y∈A,γ1·y∗=γ1·x∗ e

β·y∗

On the other hand, if lim supi |T1 (βi)| =∞, then by Lemma 3, we can assume T1(βi)
|T1(βi)| → γ2 ∈

H1. Let H2 ⊂ Rm denote the (m− 2)-dimensional hyperplane such that γ1 · z = γ2 · z = 0
for all z ∈ Rm and note that γ1 · γ2 = 0. If we let T2 : Rm → H2 be the projection mapping
onto H2, then by the same arguments as above,

ρA (x) = 1 {γj · x∗ ≥ γj · y∗ for all y ∈ A, j ∈ {1, 2}}
 ∑
y∈A,y∗−x∗∈H2

elimi T2(βi)·(y∗−x∗)

−1

We can continue this argument by induction, and since m is finite, we can find a sequence
(γ1, . . . , γt, β) such that

ρA (x) = 1 {γj · x∗ ≥ γj · y∗ for all y ∈ A, j ∈ {1, . . . , t}}
eβ·x

∗∑
y∈A,γj ·y∗=γj ·x∗,j∈{1,...,t} e

β·y∗

= 1 {vj (x) ≥ vj (y) for all y ∈ A, j ∈ {1, . . . , t}} eu(x)∑
y∈A,vj(y)=vj(x),j∈{1,...,t} eu(y)

for v1, . . . , vt, u ∈ Ud where v1, . . . , vt are all orthogonal. This means that ρ ∈ P lexd as desired.
Now, suppose ρ ∈ P lexd with ω = (v1, . . . , vt) for t ≤ m and u ∈ Ud. Let β∗ be the polyno-

mial vector corresponding to u and γ1, . . . , γt ∈ Rm be the polynomial vectors corresponding
to ω which are orthogonal. Without loss of generality, we can assume that γi 6= 0. By a
change of basis, we can also assume without loss that they correspond to the standard basis
in Rm. Now, define

βn =
(
nk, nk−1 . . . , n2, nβ∗t , nβ

∗
t+1, . . . , nβ

∗
m

)
Let ρn be the logit corresponding to βn so ρn ∈ P logd and it is straightforward to see that
ρn → ρ.
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D.2 Proof of Proposition 2.2

We first prove a couple of technical lemmas.

Lemma 4. Consider non-constant u, v ∈ Ud and suppose u (x) > u (y) implies v (x) ≥ v (y)
for all x, y ∈ D where D is dense in X. Then u (x) > u (y) iff v (x) > v (y) for all x, y ∈ X.

Proof. We first show that u (x) > u (y) implies v (x) ≥ v (y) for all x, y ∈ X. Since D
is dense in X, we can find xε, yε ∈ D arbitrarily close to x and y respectively such that
u (xε) > u (yε). Thus, v (xε) ≥ v (yε) so by continuity v (x) ≥ v (y).

Now, suppose u (x) > u (y) for x, y ∈ X but v (x) = v (y). Define

g (α) = v (x)− v ((1− α)x+ αy)

and note that g is a polynomial. Since v is non-constant, g has a finite number of roots.
Label then as {x0, . . . , xn} where xi = (1− αi)x+ αiy with α0 = 0 and αn = 1. Since g has
no roots for α ∈ (0, α1), it must be either g (α) > 0 for all α ∈ (0, α1) or g (α) < 0 for all
α ∈ (0, α1). In either case, we can find xε, x′ε ∈ D arbitrarily close to x0 and x1 respectively
such that u (xε) > u (x′ε). By continuity, u (x0) ≥ u (x1). By the same argument, we can
also find x̃ε, x̃

′
ε ∈ D arbitrarily close to x0 and x1 respectively such that u (x̃ε) < u (x̃′ε)

so u (x0) ≤ u (x1). This implies that u (x0) = u (x1). By induction, we can repeat this
argument for all xi for i ∈ {2, . . . , n} so we have u (x) = u (y) yielding a contradiction.
Thus, u (x) > u (y) implies v (x) > v (y) and the conclusion follows by symmetry. �

Lemma 5. If D ⊂ A is countable, then for any limit point σ of P logd there exists a sequence
ρn ∈ P logd such that ρnA → σA for every A ∈ D.

Proof. Since D is countable, we can find sets Dn where |Dn| = n and Dn ↗ D. Now, for
any A ∈ Dn, let

Qn (A) :=
{
q ∈ ∆A : |q − σA| <

1
n

}
which is open in ∆A. Thus,

Qn =
∏

A∈An

Qn (A)×
∏

A∈A\An

∆A

is open in the product topology. Since σ ∈ Qn is a limit point, we can find some ρn ∈ Qn∩P logd
for every n.
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Fix some A ∈ D and note that we can find some N such that A ∈ Dn for all n > N .
Since ρn ∈ Qn, that means that |ρnA − σA| < 1

n
for all n > N . Thus, ρnA → σA for every

A ∈ D as desired. �

We now prove Proposition 2.2. Let D1 be a countable dense subset of X and D1 ⊂ A
denote all binary menus {x, y} where x, y ∈ D1. Let

Z := {y∗ − x∗ : x, y ∈ X}

Z1 := {y∗ − x∗ : x, y ∈ D1}

Since D1 is countable, by Lemma 5, we can find ρn ∈ P logd such that ρnA → σA for every
A ∈ D1. Thus,

σ (x, y) = lim
n
ρn (x, y) =

∑
y∈A

elimn βn·(y∗−x∗)

−1

so limn βn · z exists for every z ∈ Z1. We now consider two cases: (1) lim supn |βn| <∞ and
(2) lim supn |βn| =∞.

First, consider case (1). By Lemma 3, there exists a convergent subsequence βj → β for
some β ∈ Rm. Consider any B ∈ A and so by Lemma 5, we can find τn ∈ P logd such that
τnA → σA for every A ∈ D1 ∪ {B}. Let β′n correspond to τn so for all z ∈ Z1,

lim
n
β′n · z = lim

n
βn · z = β · z

We now show that lim supn |β′n| < ∞. Suppose otherwise, so by Lemma 3, we can find a
subsequence β′i

|β′i|
→ γ ∈ Rm. Moreover, if γ · z > 0, then limi β

′
i · z = ∞ > β · z yielding a

contradiction. The case for γ · z < 0 is symmetric so it must be that γ · z = 0 for all z ∈ Z1.
Since D1 is dense in X and the latter is a full-dimensional subset of Rk, this is impossible.
Thus, lim supn |β′n| <∞ so by continuity (Corollary 6.40 of AB), limn β

′
n · z = limn βn · z for

all z ∈ Z. This means that

σB (x) = lim
n
τnB (x) = lim

n

eβ
′
n·x∗∑

y∈B eβ
′
n·y∗

=
∑
y∈B

elimn β′n·(y∗−x∗)

−1

=
∑
y∈B

elimn βn·(y∗−x∗)

−1

= lim
n

eβn·x∑
y∈B eβn·y

Since this is true for all B ∈ A, σ is a sequential limit of logits of degree d.
Now, consider case (2). By Lemma 3, we can find a subsequence βi

|βi| → γ1 ∈ Rm such
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that limi βi · z =∞ if γ1 · z > 0 and limi βi · z = −∞ if γ1 · z < 0 for all z ∈ Z. Let H1 ⊂ Rm

denote the (m− 1)-dimensional hyperplane such that γ1 · z = 0. We consider two subcases:
(i) Z ∩H1 = ∅ and (ii) Z ∩H1 6= ∅.

First, consider subcase (i) where Z ∩ H1 = ∅ so γ1 · z 6= 0 for all z ∈ Z. Consider
any B ∈ A and so by Lemma 5, we can find τn ∈ P logd such that τnA → σA for every
A ∈ D1 ∪ {B}. Let β′n correspond to τn so limn β

′
n · z = limn βn · z for all z ∈ Z1. Note

that if lim supn |β′n| < ∞, then by the same argument as above, we have a contradiction.
Thus, it must be that lim supn |β′n| = ∞, so by Lemma 3 again, we can find a subsequence
β′i
|β′i|
→ γ′1 ∈ Rm such that limi β

′
i · z =∞ if γ′1 · z > 0 and limi β

′
i · z = −∞ if γ′1 · z < 0 for all

z ∈ Z. Let u, v ∈ Ud correspond to γ1 and γ′1 respectively. Thus, for x, y ∈ D, u (x) > u (y)
implies∞ = limn βn ·(x∗ − y∗) = limn βn ·(x∗ − y∗) so v (x) ≥ v (y). By Lemma 4, this means
that γ1 · z > 0 iff γ′1 · z > 0 for all z ∈ Z. Since γ1 · z 6= 0 for all z ∈ Z, limi β

′
i · z = limi βi · z

for all z ∈ Z so

σB (x) = lim
n
τnB (x) =

∑
y∈B

elimn β′n·(y∗−x∗)

−1

=
∑
y∈B

elimn βn·(y∗−x∗)

−1

= lim
n

eβn·x∑
y∈B eβn·y

Since this is true for all B ∈ A, σ is a sequential limit of logits of degree d.
Next, consider subcase (ii) where Z ∩H1 6= ∅. Let D2 ⊂ X be a countable set such that

Z2 := {y∗ − x∗ : x, y ∈ D2}

is dense in Z ∩H1. Let D2 ⊂ A denote all binary menus {x, y} where x, y ∈ D1 ∪D2. Since
D2 is countable, by Lemma 5, we can find ρ̃n ∈ P logd such that ρ̃nA → σA for every A ∈ D2.
Let β̃n correspond to ρ̃n so limn β̃n · z = limn βn · z for all z ∈ Z1 ∪ Z2. Since we are in case
(2), by the same argument as above, it must be that lim supn

∣∣∣β̃n∣∣∣ = ∞, so by Lemma 3
again, we can find a subsequence β̃i

|β̃i| → γ̃1 ∈ Rm such that limi β̃i · z =∞ if γ̃1 · z > 0 and
limi γ̃1 · z = −∞ if γ̃1 · z < 0 for all z ∈ Z. Applying Lemma 4 as above, it must be that
γ1 · z = 0 iff γ̃1 · z = 0 for all z ∈ Z.

Let T1 : Rm → H1 be the projection mapping onto H1, that is

T1 (β) := β − (β · γ1) γ1

Now, for any z ∈ Z ∩H1,

β · z = (T1 (β) + (β · γ1) γ1) · z = T1 (β) · z
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We now consider two cases: (1’) lim supn
∣∣∣T1

(
β̃n
)∣∣∣ <∞ and (2’) lim supn

∣∣∣T1
(
β̃n
)∣∣∣ =∞.

First, consider case (1’). By Lemma 3, there exists a convergent subsequence T1
(
β̃i
)
→ β

for some β ∈ Rm. Consider any B ∈ A and so by Lemma 5, we can find τn ∈ P logd such that
τnA → σA for every A ∈ D2 ∪ {B}. Let β′n correspond to τn so for all z ∈ Z1 ∪ Z2,

lim
n
β̃n · z = lim

n
β′n · z

By the same argument as above, it must be that limn β̃n · z = limn β
′
n · z for all z ∈ Z\H1.

Now, for z ∈ Z2, we have

lim
n
T1 (β′n) · z = lim

n
β′n · z = lim

n
β̃n · z = lim

i
T1
(
β̃i
)
· z = β · z

By the same argument as above, this implies that lim supn |T1 (β′n)| < ∞. Thus, we have
limn β

′
n · z = limn βn · z for all z ∈ Z so

σB (x) = lim
n
τnB (x) =

∑
y∈B

elimn β′n·(y∗−x∗)

−1

=
∑
y∈B

elimn β̃n·(y∗−x∗)

−1

= lim
n

eβ̃n·x∑
y∈B eβ̃n·y

Since this is true for all B ∈ A, σ is a sequential limit of logits of degree d.
Finally, for case (2’), we can inductively apply the same reasoning as in case (2) above.

Since the dimension is finite, we obtain the conclusion by induction.

E Proof of Proposition 3

Let P̄ lexd denote the closed convex hull of P lexd , that is

P̄ lexd := cl
(
co
(
P lexd

))
⊂ P

which is compact. We first show the following which will imply that Pmlexd is closed.

Lemma 6. P̄ lexd = Pmlexd

Proof. Since co
(
P lexd

)
is convex, P̄ lexd is also convex (Lemma 5.27 of AB). We first show

that Pmlexd ⊂ P̄ lexd . Let ρ ∈ Pmlexd so there exists a distribution ν on Ωd × Ud such that

ρ =
∫

Ωd×Ud

ρ(ω,u)dν

where ρ(ω,u) ∈ P lexd is the lexicographic-logit stochastic choice corresponding to (ω, u) ∈
Ωd×Ud. Suppose ρ 6∈ P̄ lexd . Since V is locally convex (Lemma 1), continuous linear functionals
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separates points in V . Thus, we can apply the strict separating hyperplane theorem (Theorem
3.5 of Rudin (1991)) and find a continuous linear functional Λ such that for all τ ∈ P̄ lexd ,

Λ (ρ) = 1 > 0 = Λ (τ)

Now,
1 = Λ (ρ) = Λ

(∫
Ωd×Ud

ρ(ω,u)dν
)

=
∫

Ωd×Ud

Λ
(
ρ(ω,u)

)
dν = 0

as ρ(ω,u) ∈ P̄ lexd . This yields a contradiction so Pmlexd ⊂ P̄ lexd .
Next, we show that P̄ lexd ⊂ Pmlexd . Fix some ρ ∈ P̄ lexd . Since P lexd = cl

(
P logd

)
by

Proposition 2, it is closed and thus compact. By Theorem 3.28 of Rudin (1991), there exists
a Borel probability measure π on P lexd such that

ρ =
∫
Plex

d

τ dπ

We now show ρ must be mixed lexicographic-logit. Consider the mapping ϕ : Ωd×Ud → P lexd
such that ϕ = ρ(ω,u). Let G be be the σ-algebra on Ωd × Ud generated by ϕ. We can thus
define a measure ν on G such that

π = ν ◦ ϕ−1

Thus, by a change of variables (Theorem 13.46 of AB),

ρ =
∫
Plex

d

τ dπ =
∫

Ωd×Ud

ϕ (ω, u) dν =
∫

Ωd×Ud

ρ(ω,u)dν

so ρ ∈ Pmlexd as desired. �

We now prove Proposition 3. Since P logd ⊂ P lexd , we have that Pmlogd ⊂ Pmlexd . Thus,

cl
(
Pmlogd

)
⊂ cl

(
Pmlexd

)
= Pmlexd

where the last equality follows from Lemma 6. Now, consider ρ ∈ Pmlexd and suppose
ρ 6∈ cl

(
Pmlogd

)
. Applying the strict separating hyperplane theorem again, there exists a

continuous linear functional Λ such that for all τ ∈ cl
(
Pmlogd

)
,

Λ (ρ) = 1 > 0 = Λ (τ)

Now
1 = Λ (ρ) = Λ

(∫
Ωd×Ud

ρ(ω,u)dν
)

=
∫

Ωd×Ud

Λ
(
ρ(ω,u)

)
dν = 0
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where the last equality follows from the fact that ρ(ω,u) ∈ P lexd = cl
(
P logd

)
⊂ cl

(
Pmlogd

)
.

Thus, we have a contradiction. This shows that cl
(
Pmlogd

)
= Pmlexd as desired.

F Proof of Theorem 1

We first prove a couple of technical lemmas.

Lemma 7. Let xn =
(
1− 1

n

)
x + 1

n
y for x, y ∈ X. For any ω ∈ Ωd, exactly one of the

following holds

(1) limn 1 {y �ω xn} = 1

(2) limn 1 {y ∼ω xn} = 1

(3) limn 1 {y ≺ω xn} = 1

Proof. For any v ∈ Ud, let

g (α) = v (y)− v ((1− α)x+ αy)

and note that g is a polynomial. Since any non-zero polynomial has a finite number of
roots, it means that we can find some N such that either (i) g

(
1
n

)
> 0 for all n > N , (ii)

g
(

1
n

)
= 0 for all n > N , or (iii) g

(
1
n

)
< 0 for all n > N . Let U�d , U∼d and U≺d be the

partition of Ud corresponding to these three conditions. It is straightforward to see that for
ω = (v1, . . . , vt) ∈ Ωd,

(1) If vi ∈ U∼d for all 0 ≤ i < j ≤ t and vj ∈ U�d , then limn 1 {y �ω xn} = 1.

(2) If vi ∈ U∼d for all 1 ≤ i ≤ t, then limn 1 {y ∼ω xn} = 1.

(3) Otherwise, limn 1 {y ≺ω xn} = 1

The result follows. �

We now prove Theorem 1. Let ρ ∈ Ppc and suppose ρ ∈ cl
(
Pmlogd

)
. By Proposition 3,

ρ ∈ Pmlexd so there exists some distribution ν on Ωd × Ud such that

ρA (x) =
∫

Ωd×Ud

1 {x �ω y for all y ∈ A} eu(x)∑
y∈A,y∼ωx e

u(y)dν

29



We will show that any distinct x, y ∈ X, x ∼ω y with ν-measure zero. Let xn =(
1− 1

n

)
x+ 1

n
y and define the following sets

Ω1 = {ω ∈ Ωd : y �ω x} Ω′1 =
{
ω ∈ Ωd : lim

n
1 {y �ω xn} = 1

}
Ω2 = {ω ∈ Ωd : y ∼ω x} Ω′2 =

{
ω ∈ Ωd : lim

n
1 {y ∼ω xn} = 1

}
Ω3 = {ω ∈ Ωd : y ≺ω x} Ω′3 =

{
ω ∈ Ωd : lim

n
1 {y ≺ω xn} = 1

}
Note that {Ω1,Ω2,Ω3} and {Ω′1,Ω′2,Ω′3} are both partitions of Ωd, where the latter follows
from Lemma 7. Suppose ω = (v1, . . . , vt) ∈ Ω′2, so vi (y) = vi (xn) for sufficiently large n and
all 1 ≤ i ≤ t. This implies that vi (y) = vi (x) for all 1 ≤ i ≤ t or y ∼ω x. Thus, Ω′2 ⊂ Ω2.
This implies that

Ω1 ∩ Ω′2 = Ω3 ∩ Ω′2 = ∅ (1)

Let An = {y, x, xn} and note that An → {y, x}. Since ρ ∈ Ppc, by Theorem 3.1,

ρ (y, x) = lim
n
ρ (y, xn) = lim

n
ρAn (y)

For ease of notation, we suppress the dependence on Ud; for instance, we let ν (Ωi) denote
ν (Ωi × Ud). Now,

ρ (y, x) = ν (Ω1) +
∫

Ω2

eu(y)

eu(y) + eu(x)dν

= ν (Ω1 ∩ Ω′1) + ν (Ω1 ∩ Ω′3) +
∫

Ω2

eu(y)

eu(y) + eu(x)dν (2)

where the second equality follows from equation (1). By dominated convergence

lim
n
ρ (y, xn) = ν (Ω′1) +

∫
Ω′2

eu(y)

eu(y) + eu(x)dν

= ν (Ω1 ∩ Ω′1) + ν (Ω2 ∩ Ω′1) + ν (Ω3 ∩ Ω′1) +
∫

Ω2∩Ω′2

eu(y)

eu(y) + eu(x)dν (3)

where the last equality follows from (1) again. Applying dominated convergence again,

lim
n
ρAn (y) = ν (Ω1 ∩ Ω′1) +

∫
Ω2∩Ω′1

eu(y)

eu(y) + eu(x)dν +
∫

Ω2∩Ω′2

eu(y)

eu(y) + 2eu(x)dν (4)
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Subtracting equation (4) from (3), we have

0 =
∫

Ω2∩Ω′1

(
1− eu(y)

eu(y) + eu(x)

)
dν + ν (Ω3 ∩ Ω′1) +

∫
Ω2∩Ω′2

(
eu(y)

eu(y) + eu(x) −
eu(y)

eu(y) + 2eu(x)

)
dν

This implies that Ω2 ∩ Ω′1, Ω3 ∩ Ω′1 and Ω2 ∩ Ω′2 are all ν-measure zero sets. Combining
equations (2) and (3), we have

0 = ν (Ω1 ∩ Ω′3) +
∫

Ω2

eu(y)

eu(y) + eu(x)dν

so Ω2 must also be a ν-measure zero set as desired.
We thus have

ρA (x) =
∫

Ωd

1 {x �ω y for all y ∈ A} dν

= ν ({ω ∈ Ωd : x �ω y for all y ∈ A})

Now, for every ω = (v1, . . . , vt) ∈ Ωd, let θω = (βω1 , . . . , βωt ) denote the collection of coeffi-
cients such that

vi (x) = βωi · x∗

We can thus extend ρ to a stochastic choice ρ∗ in Rm such that ρA (x) = ρ∗A∗ (x∗) and for
any finite D ⊂ Rm,

ρ∗D (z) = ν ({ω ∈ Ωd : z �θω w for all w ∈ D})

Moreover, since for all x, y ∈ X, x ∼ω y with ν-measure zero, without loss of generality, we
can assume that for all z, w ∈ Rm, z ∼θω w with ν-measure zero as well.

We now show that ρ∗ satisfies the Gul and Pesendorfer (2006) axioms. Since �θω satisfies
independence, ρ∗ satisfies linearity and since y ∼θω x with ν-measure zero, ρ also satisfies
extremeness. Mixture continuity follows from the same argument as Lemma 3 in the Sup-
plement of Gul and Pesendorfer (2006). This means that we can find some finitely-additive
µ∗ on Rm such that

ρ∗D (z) = µ∗ ({β ∈ Rm : β · z ≥ β · w for all w ∈ D})
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Since ρA (x) = ρ∗A∗ (x∗),

ρA (x) = µ∗ ({β ∈ Rm : β · x∗ ≥ β · y∗ for all y ∈ A})

= µ ({u ∈ Ud : u (x) ≥ u (y) for all y ∈ A})

Finally, since ρ is continuous, the countable additivity of µ follows from the same argument
as Lemma 6 in Gul and Pesendorfer (2006).
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