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Abstract

We study auction design for bidders equipped with non-expected utility pref-

erences that exhibit constant risk aversion (CRA). The CRA class is large and

includes loss-averse, disappointment-averse, mean-dispersion and Yaari’s dual pref-

erences as well as coherent and convex risk measures. The optimal mechanism offers

“full-insurance” in the sense that each agent’s utility is independent of other agents’

reports. The seller excludes less types than under risk neutrality, and awards the

object randomly to intermediate types. Subjecting intermediate types to a risky

allocation while compensating them when losing allows the seller to collect larger

payments from higher types. Relatively high types are anyway willing to pay more,

and their allocation is efficient.

∗A previous version has been circulated under the title “Optimal Auctions for Dual Risk Averse
Bidders: Myerson meets Yaari”.
†We wish to thank Sarah Auster, Levon Barseghyan, Yeon-Koo Che, Eddie Dekel, David Dillenberger,

Daniel Garrett, Tzachi Gilboa, Faruk Gul, Sergiu Hart, Botond Köszegi, Nick Netzer, Jawwad Noor, Zvi
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1 Introduction

Auctions create risks for bidders because both the allocation of physical goods and the

associated payments are ex-ante random. Sellers facing risk averse bidders can earn

more profit (relative to the risk neutral benchmark) by exploiting their unwillingness to

undertake risks. Maskin and Riley [1984] studied optimal auction design with risk averse

bidders that maximize expected utility. In that case, the celebrated payoff and revenue

equivalence results that hold for the risk-neutral case fail, and the optimal auction format

crucially depends on bidders’ risk preferences.

In most auctions the stakes are small or moderate compared to the total wealth of the

involved agents. Plausible calibrations of expected utility theory generally lead to risk-

neutral behavior over small stakes (see, e.g., Rabin [2000]). But, there is ample field and

laboratory evidence that the expected utility theory does not perform well in explaining

agents’ risk attitude over small or modest stakes.

A large and important class of models within the framework of non-expected utility

(non-EU) generates first-order risk aversion and can provide a more plausible account

of modest-scale risk attitudes (see Kahneman and Tversky [1979], Yaari [1987], Quiggin

[1982] and Gul [1991] among others). In addition, very large theoretical and applied

literature in finance, bank regulation and insurance define and analyze risk measures that

are directly derived from these non-EU decision-theoretic models (see, for example, the

excellent textbook by Föllmer and Schied [2011]).

In this paper, we derive the revenue maximizing mechanism for a seller facing risk-

averse bidders endowed with non-expected utility preferences exhibiting a constant atti-

tude towards risk. The informational assumptions in our model are otherwise standard,

and follow the independent, private values paradigm.

Constant risk aversion (CRA) means that adding the same constant to all outcomes

of two lotteries, or multiplying all their outcomes by the same positive constant, will

not change the preference relation between them. These properties make constant risk

aversion rather appealing for auction settings where stakes are small or moderate.

While CRA reduces to risk neutrality within the expected utility framework (i.e., in

that case our analysis reduces to the classical one due to Myerson [1981] and Riley and

Samuelson [1983]), it yields a novel and rich framework for mechanism design once the

expected utility (EU) hypothesis is dropped.

The building blocks of Safra and Segal’s [1998] characterization of CRA preferences are

Yaari’s dual utility functionals (Yaari [1987]). These functionals are obtained by applying

a distortion (or weight function) to the probabilities attached to various events, and they
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allow a separation between risk attitudes and wealth effects.1 Any risk averse CRA utility

can be obtained as a minimum over such functionals, each of them being characterized

by its respective convex distortion of probabilities. Examples include Yaari’s dual utility

itself, Gul’s [1991] and Loomes and Sugden’s [1986] disappointment aversion theories with

a linear utility over outcomes, Köszegi and Rabin’s [2006] loss-averse utility with a linear

utility over outcomes, mean-dispersion utility of the type used in the macro and finance

literature (e.g., Rockafellar et al [2006] and Blavatskyy [2010]), and maxima or minima

over any sets of CRA utility functionals (see Appendix A). Moreover, CRA utilities are

mirror images of the large class of coherent and convex risk measures appearing in the

financial literature mentioned above. For example, Yaari’s dual utility functionals cor-

respond to the so-called distortion (or spectral) risk measures, related to the weighted

average values at risk (see Föllmer and Schied [2011] and Rüschendorf [2013]).

The main structural feature that distinguishes the present preferences from expected

utility and that is responsible for the novel properties of optimal mechanisms in our

framework is first-order risk aversion (see Segal and Spivak [1990]): even in the limit

where the stakes become infinitesimally small, our risk-averse bidders are willing to pay

a strictly positive risk premium in order to avoid an actuarial fair risk. In contrast, it is

well known that any EU preference represented by a twice differentiable utility function

exhibits second-order risk aversion: in the limit where the stakes become small, EU agents

become risk neutral and the risk premium they require tends to zero. This phenomena

can have far-reaching implications for behavior. For example, Epstein and Zin [1990]

found that Yaari’s dual utility can partially resolve the equity premium puzzle posed

by Mehra and Prescott [1985]: faced with lotteries with small stakes, a dual risk-averse

(EU risk-averse) agent requires a risk premium proportional to the standard deviation

(variance) of the lottery. For small risks, the standard deviation is considerably larger

than the variance and can thus generate a higher equity premium.

In their study of revenue maximization for risk averse, expected-utility bidders, Maskin

and Riley [1984] noted that a risk neutral seller faces a trade-off between “the desirability

of insuring buyers against risk, and the desirability of exploiting their risk-bearing in order

to screen them”. As smooth EU risk aversion is of second-order, the bidders’ incentives to

pay for insurance vanish as the degree of risk exposure goes to zero, while the screening

concern always remains relevant. Thus, screening eventually becomes the dominant factor,

and full-insurance cannot be optimal.

1This class of preferences is also obtained as a special case of Quggin’s [1982] well-known model of
rank dependent utility, where the utility function evaluating outcomes is linear.
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In contrast, because the preferences studied in this paper exhibit first-order risk aver-

sion, the bidders’ willingness to pay for insurance remains positive even in the limit: our

first main result (Proposition 2) shows that, under a very weak form of risk aversion,

the search for an optimal procedure can be confined to the class of incentive compatible

(IC) full-insurance mechanisms, where the utility of an agent is only a function of his

type: it depends neither on the types of other agents, nor on the realization of other

randomizations within the mechanism. In particular, this means that losing buyers must

be compensated in order to make them indifferent to winning. Proposition 3 shows that

any allocation function that induces for each bidder a monotonic expected probability of

getting the object is implementable by a full insurance mechanism.2

It is important to note that incentive compatible, full-insurance mechanism still in-

volves risks for agents that deviate from truth-telling. Our second main result Corollary

1 derives upper and lower bounds for the expected revenue in any full-insurance mech-

anisms. These bounds are functions of the agents’ limit risk premia required for binary

lotteries when deviations from truth-telling become infinitesimally small. In particular,

this result implies that the same revenue can be obtained from bidders with different

preferences that nevertheless agree on a small set of binary lotteries. For the classical

risk-neutral case (which is included as a special case), these bounds reduce to an instance

of payoff equivalence (see Myerson [1981]). The same technique of using the order of risk

aversion shows that the revenue obtained by a full insurance mechanism never exceeds

the revenue from a second-price auction among bidders with smooth EU risk aversion.

Since Maskin and Riley [1984] have proven that, under very general conditions, second

price auctions are not optimal with EU risk averse bidders, the above observation yields

that full insurance mechanisms cannot be generally optimal with EU risk-aversion.

Armed with the above insights, we turn to revenue maximization. The idea is to con-

struct an incentive compatible, full-insurance mechanism that achieves the upper revenue

bound derived in Corollary 1. This bound is a non-linear function of the reduced-form

allocation (i.e., via the risk premium), and the maximization exercise must be approached

by convex analysis/optimal control methods.

Consider first the optimal mechanism for a single bidder: instead of a classical take-it-

or-leave offer for a risk-neutral buyer, we find that the seller awards the object randomly

to intermediate types. Subjecting these types to a risky lottery while compensating them

when they do not get the object allows the seller to collect larger payments from higher

types, which is ultimately profitable. High types receive the object with probability one,

2Note that the converse need not hold here!

4



as distorting their allocation is too costly. This is related to a monopolistic screening

problem a la Mussa and Rosen [1978]3: even if the cost of producing any quality is here

zero, it is sometimes optimal for the monopolist to sell intermediate types a “damaged”

good (that sometimes malfunctions) plus a full-insurance warranty.

The main complication of the n-bidders allocation problem relative to the single-

bidder case is the feasibility constraint, binding across types, that restricts the reduced

form allocation, i.e., the expected probability of obtaining an object for each bidder type

(see Border [1991]).4 Incorporating this constraint yields an optimal control problem

with a pure state constraint. Under a regularity condition that generalizes the standard

monotonicity of the virtual value function, we solve this problem (see Theorem 1) for

any utility that agrees with a Yaari functional on binary lotteries, e.g., disappointment-

averse or loss-averse preferences with a linear utility over outcomes, and mean-dispersion

preferences as used in the macro-finance literature. The optimal allocation has features

similar to that in the single-bidder case: in particular, even when the object is allocated,

it is not always allocated efficiently, and payments are computed to yield full insurance.

Finally we discuss the general case with constant risk aversion and show that the

induced optimal control problem has a solution and that the necessary conditions for

optimality are also sufficient (Theorem 2). Moreover, the expected revenue increases

when bidders become more risk-averse.

In Appendix A we list several well-known non-expected utility preferences that satisfy

our assumptions and their relations to Yaari functionals on binary lotteries. All proofs

are in Appendix B.

1.1 Related Literature

Most of the papers investigating auctions with EU risk-averse bidders (e.g. Matthews

[1987], Baisa [2017]) do not aim to provide a characterization of the optimal mechanism.

Revenue maximization with risk averse buyers under expected utility has been studied by

Maskin and Riley [1984] and by Matthews [1983]. Matthews [1983] restricts attention to

constant absolute risk aversion (CARA) expected utility preferences and finds that the

optimal mechanism resembles a modified first-price auction where the seller sells partial

insurance to bidders with high valuation, but charges an entry fee to bidders with low

valuation. The optimal auction in the EU case with CARA shares with ours the property

3This problem was analyzed by Matthews and Moore [1987] for a risk-averse agent with EU preferences.
4The basic maximization problem is here concave. See Gershkov et al. [2019] for the analysis of a

convex revenue maximization problem (with the same obstacle) via the Fan-Lorentz integral inequality.
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that intermediate types can get a random allocation. Note that Matthews’ derivation

holds for one special functional form of utilities - an exponential. Although we impose, in

addition, constant relative risk aversion (CRRA) our treatment of the non-EU case holds

for a very large class of different utilities.

Baisa [2017] studies an auction model with non-quasilinear and risk averse preferences

and finds that standard auctions that allocate the good to the highest bidder are no

longer revenue maximizing: the designer may prefer to utilize lotteries5. He introduced a

novel mechanism, the probability demand mechanism, and showed that it outperforms all

standard auctions, but does not characterized the optimal mechanism in his framework.

Maskin and Riley [1984] allow for more general risk averse (EU) preferences and es-

tablish several important properties of an optimal auction. In particular, they show that

full insurance need not be optimal in their expected-utility framework. We explain and

contrast this result with ours.

It is interesting to point out that Riley and Samuelson [1983] have constructed full

insurance mechanisms (which they called Santa Claus auctions) that maximize revenue

in the EU risk-neutral case. Of course, in that case, many other “standard” mechanisms

are also optimal. The optimality of offering insurance also appears in the context of

auctions with ambiguity-averse bidders: Bose et al. [2006] consider the two-bidder, risk-

neutral case and show that an insurance mechanism is optimal among all deterministic

mechanisms. In their framework, bidders are indeed insured against variations in the other

bidder’s type, but not necessarily against the allocative risk generated by the mechanism

itself or by ambiguity within the mechanism (the risk coming from random transfers

is not relevant as they restrict attention to deterministic mechanisms). Their induced

maximization problem is linear in probabilities, and thus the respective optimal auction

is obtained by standard methods.

Analogously to the EU case, almost all papers studying auctions where bidders have

non-expected utility typically compare the performance of specific selling formats, e.g.,

the early contributions of Neilson [1984], Karni and Safra [1989], Lo [1998], and, more

recently, Che and Gale [2006]. This last paper shows that, for a large class of non-expected

utility risk-averse preferences, a first price auction yields a higher revenue than a second-

price auction. None of these authors discussed optimal mechanisms in their respective

frameworks. Heidhues and Köszegi [2014] consider a profit-maximizing monopolist selling

to a single representative consumer who is loss averse. They show how randomized prices

5See also Kazumura, T., Mishra, D., & Serizawa [2020] who study a single-agent mechanism design
problem with non-quasilinear preferences and show that revenue equivalence fails.
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can increase revenue by affecting the buyer’s reference point for evaluation her purchase.

Volij [2002] studied standard auctions where bidders’ preferences follow Yaari’s dual

utility (recall that these preferences are the building blocks for the class of CRA pref-

erences analyzed here), and claimed a payoff-equivalence result within this class. Un-

fortunately, his result is not correct6. We explain the problem in more detail after the

derivation of the revenue bounds in Proposition 3.

A well-known example of auctions where (some) losers are compensated are the so-

called premium auctions where the seller rewards one, or more, high losing bidders7.

Although in practice not all losers who bid above a threshold are compensated (as would

be required in our full insurance mechanisms), the implied compensation in our mecha-

nisms for low and intermediate types is relatively small because their chance of winning is

also small. Thus, in our optimal mechanism only high-type losing bidders get substantial

compensation, which is broadly consistent with the practice of premium auctions. Mil-

grom [2004] and Goeree and Offerman [2004] suggest that a premium auction format is

used to encourage weak bidders to compete against strong bidders. Hu, Offerman and

Zou [2011] studied a two-stage English premium auction model with symmetric, inter-

dependent values, and showed that the use of premium is only profitable to the seller

when bidders are risk-loving. Hu, Offerman and Zou [2017] showed that, if both the seller

and the bidders are risk-averse, premium auctions allow risk sharing that may benefit all

participants. All identified reasons where premium auctions may be beneficial are thus

quite different from our insights.

We note that full insurance contracts are also consistent with observations from real-life

insurance markets where even moderate risks are often fully insured: Cohen and Einav

[2007] (house insurance) and Sydnor [2010] (car insurance), among others, empirically

show that assuming EU yields implausibly large measures of risk parameters for a range

of moderate risks. Most customers in their studies purchase low deductibles - de facto

warranties - despite costs that are significantly above the expected value.

Finally, the observation that often agents’ risk taking behavior cannot be rationalized

by expected utility theory is also supported by evidence from sport bets studies (see

Snowberg and Wolfers [2010]) and property insurance markets (Barseghyan et al [2011]).8

6We are extremely grateful to a referee who made us aware of this issue.
7Premium auctions have been around since the Middle Ages, and are still used today to sell houses,

land, large equipment (e.g., boats, planes, machines) and inventories of insolvent businesses (see Goeree
and Offerman [2004]).

8Looking at households that purchase property insurance Barseghyan et al [2011] reject the hypothesis
that subjects have stable expected utility preferences for more than 3/4 of the households.This finding
is confirmed for insurance coverage and 401(k) investment decisions in Einav et al [2012]. Barseghyan
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Several laboratory experiments illustrated similar findings (see Bruhin, Fehr-Duda and

Epper [2010] and Goeree, Halt and Palfrey [2002]).

2 The Auction Model

A risk-neutral seller has an indivisible object, and there are n ≥ 1 potential buyers. The

monetary valuation (or type) of bidder i for the object, θi ∈ [0, 1], is drawn according to

a distribution Fi with density fi > 0, independently of other bidders’ valuations.

In order to formally model both random allocations and random transfers that may

depend on the realized allocation of the object, it will be useful to explicitly specify the

probability space (Ω,F ,P) on which these random variables are defined. We assume

that all randomness in the mechanism is derived from a single random number r ∈ [0, 1]

that is drawn in addition to the draws of individual types.9 We denote by ω = (θ, r) ∈
Ω = [0, 1]n+1 a realization of types and of the random number. We denote by P[·] the

probability measure on Ω defined by drawing θi independently according to Fi, and r

independently from the uniform distribution on [0, 1]. We denote by E[·] the associated

expectation operator.

2.1 Preferences

Auction mechanisms (see below for the formal definition) induce lotteries that specify for

each bidder a probability of getting the object - and hence of receiving the associated

monetary valuation specified by the bidder’s type - and, in addition, a possibly random

monetary payment that the bidder must make. Thus, to describe bidders’ behavior we

need to first specify their preferences over lotteries with monetary payoffs.

Let X be the set of bounded random variables defined on the given probability space

(Ω,F ,P). The distribution of a random variable x is denoted by Fx. With a slight abuse

of notation, we let b represent a constant random variable with value b ∈ R.
We assume that each bidder i′s preferences �i can be represented by an utility func-

tional Ui defined on X that satisfies the following basic properties.

Continuity: Ui is continuous with respect to the weak topology.

Law Invariance: For any x, y ∈ X, Fx = Fy ⇒ Ui(x) = Ui(y).

et al [2016] also find that stable Yaari and rank-dependent utility preferences cannot be rejected for the
majority of households in a data set of car and home-insurance choices.

9This is without loss of generality by the general results of Halmos and von Neumann [1942].
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Monotonicity: For any x, y ∈ X , x ≥ y a.s. implies Ui(x) ≥ Ui(y). 10

The above are standard properties, satisfied by practically all preference relations used

in applications. In particular, they imply the existence of a unique certainty equivalent

CEi(x) ∈ R such that Ui(x) = Ui(CEi(x)) for each x ∈ X.
In addition, for our specific results we assume the following substantial properties11:

A1 Cash Invariance: For any x ∈ X and any b ∈ R such that x+ b ∈ X it holds that

Ui(x+ b) = Ui(x) + b.

A2 Positive Homogeneity: For any x ∈ X and any α ∈ R+ such that αx ∈ X it holds

that Ui(αx) = αUi(x).

A3 Diversification: For any lotteries x, y ∈ X such that Ui(x) = Ui(y) and for any

α ∈ [0, 1] it holds that Ui (αx+ (1− α)y) ≥ Ui(x).

Assumptions A1 and A2 seems particularly relevant in auction settings where the value

of the auction object is small relative to the bidders’ wealth. Note that A1 and A2 imply

together that Ui(b) = b for any b ∈ R. Assumption A3 says that holding a portfolio of

equally preferred lotteries allows some risk hedging, and hence yields some potential ben-

efit over an un-diversified holding. By Dekel [1989] (see his Proposition 2) diversification

implies risk aversion in the standard sense where U(x) ≥ U(y) if y is a mean-preserving

spread of x12.

Since for any random variable the constant variable equal to the mean is a mean-

preserving contraction, risk aversion together with monotonicity imply that

Ui(x) = Ui(CEi(x)) ≤ Ui(E[x])⇔ CEi(x) ≤ E[x].

Some of our results only require the above weak version of risk aversion, rather than

diversification. Hence, for later use, we also introduce:

A3’ Weak Risk Aversion: For any lottery x ∈ X

CEi(x) ≤ E[x].

10In other words, U is consistent with first-order stochastic dominance.
11Not all our results require the full set of axioms. For each result we shall mention the set of axioms

that is needed, respectively.
12Note that for EU maximizers diversification is equivalent to risk aversion.
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Note that weak risk aversion is equivalent to consistency with second order stochastic

dominance for Standard EU preferences, but this is not the case with non-expected utility

preferences.

Remark 1: Analogs of the above axioms, conversely formulated for a functional ρ(x) =

−U(x), play a major role in a very large finance literature on coherent and convex risk

measures (see the excellent textbooks by Föllmer and Schied [2011] and Rüschendorf

[2013]).

Remark 2: Assuming expected utility, the cash invariance axiom A1 focuses attention

on the standard class of CARA utility functionals and Assumption A2 on the standard

class of CRRA functionals. But, the only member of expected utility class that satisfies

both CARA and CRRA is the one with linear utility - and hence with risk-neutrality.

In other words, expected utility exhibiting strict risk aversion is not consistent with the

above axioms. The situation completely changes in the framework of non-expected utility,

where a large and very interesting class of utility functionals satisfies our axioms.

Definition 1 Let φ : [0, 1] → [0, 1] be increasing and onto. For each φ, the functional

Fx →
∫
s · dφ(1 − Fx(s)) is called a Yaari functional, and the utility given by Ui(x) =∫

s · dφ(1− Fx(s)) is called Yaari’s dual utility.13

Observe that risk aversion in Yaari’s dual utility model corresponds to the convexity

of φ.

Proposition 1 (Safra and Segal [1998]) The following two conditions are equivalent:

1. Ui satisfies axioms A1-A3.

2. There exists a unique, compact set Φi of increasing, convex and onto functions φ

over [0, 1] such that

Ui(x) = min
φ∈Φi

∫
s · dφ(1− Fx(s)).

Remark: Although our model does not contain any ambiguity, the above functional form

resembles those appearing in the theory of maxmin utility under ambiguity (see the large

literature following Gilboa and Schmeidler [1989]). The maximin utility model studies

agents who behave as if they evaluate subjective uncertainty using the worst realization

13In the finance literature, this class is known under the name distortion or spectral risk measures and
is related to the well-known average value at risk (see Rüschendorf [2013]).
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of multiple priors, while our agents behave as if they evaluate objective risks by a worst-

case scenario from a set of belief distortions. If, for example, the set of priors in the

ambiguity model forms the core of a convex capacity, the resulting maxmin utility is also

a Yaari functional and it can be treated by the methods of this paper. This is the case for

the ε-contamination ambiguity model, studied in a two-person auction context by Bose

[2006] ,which corresponds to the special case where, for i = 1, 2, ε < 1, φi(p) = εp for

p < 1 and φi(1) = 1.

Within the framework of our other axioms, we could have assumed any one of the

axioms below instead of diversification A3 in order to characterize the set of CRA prefer-

ences.

Lemma 1 Assume that Ui satisfies Axioms A1-A3. Then Ui also satisfies

A4 Super-additivity: For any lotteries x, y ∈ X it holds that Ui(x+y) ≥ Ui(x)+Ui(y).

A5 Concavity: For any lotteries x, y ∈ X and any α ∈ [0, 1] it holds that

Ui (αx+ (1− α)y) ≥ αUi(x) + (1− α)Ui(y).

2.2 Mechanisms

We restrict attention to direct mechanisms where each agent i only reports her type θi.

This is without loss of generality even for agents with non-expected utility preferences as

long as the designer is either restricted to static mechanisms, or as long as each agent is

sophisticated and can commit to a strategy in the mechanism.14 We make this assumption

to rule out dynamic mechanisms that exploit the agents’ time-inconsistency.15

A direct mechanism (q, t) specifies for each agent i an allocation rule qi : [0, 1]n → [0, 1]

and a transfer ti : [0, 1]n× [0, 1]→ [−m,m] .16 We require both qi and ti to be measurable

so that both allocation and transfer are well-defined random variables. To complete the

description of the physical allocation, we define n non-overlapping sub-intervals of the

14Under either assumption, each type of an agent can commit to follow the strategy of another type.
This means that incentive compatibility of the original mechanism implies incentive compatibility of the
direct mechanism implementing the same allocation and transfers. This is, for example, discussed in Bose
& Daripa [2009].

15See Machina (1989) for an excellent discussion of this issue.
16We need to impose an upper bound on the transfer to ensure that a bidder’s utility is bounded from

below so that her preferences are well defined. But, this upper bound can be arbitrarily large, and thus
imposes no economically meaningful restriction.
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unit interval, one for each agent i, by

Wi(θ) =

[
i−1∑
j=1

qj(θ),
i∑

j=1

qj(θ)

)
. (1)

Agent i receives an object if and only if r ∈ Wi(θ), and pays the transfer ti(θ, r). Note

that, conditional on the vector of types θ , the probability with which agent i receives the

good, is

P[r ∈ Wi(θ) | θ] = qi(θ) .

Furthermore, for any realization of (θ, r), at most one agent receives the object. Note also

that, since it depends on the random number r, the transfer ti of agent i may be random

(even conditional on the agents’ types θ and on the allocation of the good!).

Fix now a mechanism (q, t). Let ui(θi, θ
′
i,θ−i, ri) : [0, 1]n+2 → [−m, 1 +m] denote the

ex-post payoff of agent i with type θi who reports that he has type θ
′

i while all other agents

report types θ−i. We slightly abuse notation by using ui(θ, r) = ui(θi,θ−i, ri) instead of

ui(θi, θi,θ−i, ri) for the case where agent i is truthful.

Let Vi(θi, θ
′
i) denote agent i’s certainty equivalent assuming that all agents other than

i report truthfully, and that agent i has type θi, but reports type θ′i. We again slightly

abuse notation by using Vi(θi) instead of Vi(θi, θi).

A mechanism (q, t) is incentive compatible if, for each agent i and for each pair of

types θi and θ′i 6= θi , it holds that:

Vi(θi) = Vi(θi, θi) ≥ Vi(θi, θ
′
i).

Whenever we want to keep track of a mechanism that varies, we shall also use the notation

Vi(θi, q, t) instead of Vi(θi).

3 Full-Insurance Mechanisms

Our first main result shows that, in order to search for the seller-optimal mechanism, we

can restrict attention to full-insurance mechanisms.

Definition 2 A full-insurance mechanism is one where the ex-post payoff of any bidder

i with type θi who truthfully reports his own type is a constant. That is, (q, t) is a full

insurance mechanism if and only if, for all i and all θi, ui(θi,θ−i, r) does not depend on

(θ−i, r).
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The superiority of full insurance mechanisms is very general: the proof of the Propo-

sition below uses only cash invariance (A1), superadditivity (A4) and weak risk aversion

(A3’).

Proposition 2 For any incentive compatible mechanism (q, t), there exists an incentive

compatible, full-insurance mechanism that implements q and the same (non-expected) bid-

der utilities, and that is at least as profitable for the seller.

The incentive compatibility of the constructed full insurance mechanism follows from

cash invariance and superadditivity: it is always more costly for agents to deviate from a

constant payoff than from a lottery with the same certainty equivalence. Since the seller is

risk neutral and the bidders are (weak) risk-averse, full-insurance mechanism maximizes

the total social surplus and thus leaves more revenue to the seller.

3.1 Implementable Mechanisms and Revenue Bounds

For any allocation rule q, define

Qi(θi) = E[qi(θi,θ−i) | θi]

to be bidder’s i induced interim probability of obtaining an object, given that he is of type

θi and that he reports it truthfully. Observe that, by the law of iterated expectations,

Qi(θi) equals the interim probability P [r ∈ Wi(θi, θ−i) | θi] assigned by agent i to the event

where he receives an object after observing his type θi. These expected probabilities are

called reduced form allocations by Border [1991].

A reduced form allocation Q = (Q1, Q2, ...Qn) is feasible if there exists an allocation

function q that induces it. A feasibleQ is implementable (or incentive compatible) if there

exists an incentive compatible mechanism (q, t) such that q induces Q.

Definition 3 Assume that agent ihas a CRA Utility function Ui and let x(1, p) denote a

binary lottery that yields 1 with probability p and yields 0 otherwise. We define

gi(p) = Ui(x(1, p)) = min
φ∈Φi

φ(p).

In words, the function gi is the certainty equivalent of a binary lottery that yields

1 with probability p and zero otherwise. It describes the probability distortion used by

the agent to assess simple binary lotteries. For example, we obviously have gi(p) = φ(p)

13



for any Yaari risk-averse utility functional represented by the probability distortion φ,

and hence gi is then convex. It is important to note that gi is convex for many other

well-known utility functions (see Appendix A) that differ from Yaari’s, but nevertheless

coincide with it on binary lotteries.

We show below that bidders’ utilities from a mechanism and hence also the revenue

obtained by the seller from each bidder can be characterized by the function gi(p). In

particular, only very minimal information about utilities is needed to compute the optimal

auction.

The following result is very general and holds for any preferences satisfying cash in-

variance (A1), positive homogeneity (A2) and weak risk aversion (A3’).

Proposition 3 Let (q, T ) be a full-insurance mechanism and Q be the reduced form

allocation rule induced by q. The mechanism (q, T ) is incentive compatible only if, for

all i, Vi(θi) is Lipschitz-continuous and satisfies

gi (Qi(θi)) ≤ V ′i (θ) ≤ 1− gi (1−Qi(θi)) .

If each component of Q is non-decreasing, then the above condition is also sufficient.

In a full insurance mechanism, a bidder who deviates from truth-telling is subjected to

risk. If a type θi bidder pretends to be of type θ′i, he obtains a constant payoff of Vi(θ
′
i) and,

in addition, a lottery which gives him a payoff of θi−θ′i with probability Qi(θ
′
i). The rank

of the payoffs varies however: under-reporting generates a lottery with a possible positive

payoff, while over-reporting generates one with a possible negative one. As our agents

overweigh negative scenarios, they are more averse to negative risks. This asymmetry

creates a range of payoffs that are incentive compatible: if the payoff from a full insurance

mechanism increases faster than the upper bound, then agent has an incentive to pretend

to be of a higher type; if the payoff increases at a slower speed than the lower bound, then

the agent has an incentive to pretend to be of a lower type. Within the above range, the

agent has no incentive to either over- or under-report.

Corollary 1 1. Let (q, T ) be a full-insurance mechanism that implements Q. Then,

the seller’s expected revenue R(Q) satisfies

n∑
i=1

∫ 1

0

[
θiQi(θi)−

1− Fi (θi)
fi (θi)

[1− gi(1−Qi(θi))]

]
fi (θi) dθi −

n∑
i=1

Vi(0)

≤R(Q) ≤
n∑
i=1

∫ 1

0

[
θiQi(θi)−

1− Fi (θi)
fi (θi)

gi (Q(θ))

]
fi (θi) dθi −

n∑
i=1

Vi(0) .
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2. For any incentive compatible mechanism (q, t) that implements Q, the seller’s ex-

pected revenue R(Q) satisfies

R(Q) ≤
n∑
i=1

∫ 1

0

[
θiQi(θi)−

1− Fi (θi)
fi (θi)

gi (Q(θ))

]
fi (θi) dθi −

n∑
i=1

Vi(0) .

The second part of the corollary follows from the first part together with Proposition 2.

Note that the classical risk-neutral model studied by Myerson [1981] and Riley and

Samuelson [1981] is also included in the above corollary as a special case: the lower and

upper bounds coincide then because g(q) = q, and we obtain an instance of the revenue

equivalence result.

Remark: Consider the binary lottery l = l(1, Qi(θi)) = x(1, Qi(θi))−Qi(θi) that yields

1 − Qi(θi) with probability Qi(θi) and −Qi(θi) otherwise. By construction, it has zero

mean. For any constant b (i.e., for any level of wealth), let π(b, εl) be the risk premium

assigned to the combined lottery b+εl. By the arguments used in the proof of Proposition

3, we obtain that, for any Qi(θi) 6= 0, 1, it holds that

lim
εi↘0

π(b, εl)

ε
= Qi(θi)− gi(Qi(θi)) > 0

if the agent is strictly risk averse. Thus, our preferences display first degree risk aversion

(see Segal and Spivak [1990], and Quiggin and Chambers [1998]). In contrast, any ex-

pected utility preference with a smooth local utility displays second degree risk aversion:

for any such utility preference, we have

lim
εi↘0

π(b, εl)

ε
= 0 and lim

εi↘0

π(b, εl)

ε2
> 0.

By arguments that are analogous to those used in the proof for Proposition 3, this obser-

vation yields:

Proposition 4 Suppose that agent i has a smooth risk-averse expected utility preference

represented by Ũi, and let (q, T ) be a full-insurance mechanism that implements Q. Then,

the seller’s expected revenue R̃(Q) satisfies

R̃(Q) ≤
n∑
i=1

∫ 1

0

[
θiQi(θi)−Qi(θi)

1− Fi (θi)
fi (θi)

]
fi (θi) dθi −

∑
i=1,2...n

Vi(0) .

Remark: With symmetric agents and with a monotone hazard rate, the above upper
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bound is attained by an optimal second-price auction (with reserve price). That is, for

risk-averse bidders with smooth expected utility, the revenue obtained by using a full

insurance mechanism never exceeds the revenue from the optimal second-price auction.

Under very general conditions, Maskin and Riley [1984] have proven that second-price

auctions are not optimal with risk-averse bidders that have EU preferences. Together, the

above observations imply that, under those general conditions, full insurance mechanisms

cannot be optimal with EU risk-aversion.

Maskin and Riley [1984] did not discuss full insurance mechanisms as defined here.

Instead, they studied perfect insurance mechanisms where bidders get the same marginal

utility if they win or lose. Perfect and full insurance coincide for one special case, called

Case 1 in their paper.17 For that case, they show that a perfect (or full) insurance auction

is revenue equivalent a second-price auction. This is consistent with our own finding

above. In addition, we showed that, for all other cases, a full insurance auction is weakly

less profitable than a second-price one.

4 Revenue Maximization

The main idea behind revenue maximization is to characterize an implementable allocation

rule that achieves the upper bound of the seller’s expected revenue (see Corollary 1) and

then to display the transfer rule that can actually implements this bound. As our objective

is to maximize the seller’s revenue, it is optimal to always leave zero rent to the lowest

type. Therefore, in the following analysis we only consider mechanisms where Vi(0) = 0

for all i.

4.1 The 1-Bidder Case

We drop here the subscript i and all respective variables refer here to a unique buyer.

The allocation that achieves the upper bound of the seller’s revenue solves

(P ) max
Q

∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)

]
f(θ)dθ

s.t. Q ∈ [0, 1] and Q is implementable.

17This is when there exists a concave and increasing function U such that: if an agent of type θ wins
the object and pays t, his utility equals U(θ − t); if this agent does not win the object and pays t, his
utility equals U(−t).
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Ignoring first the implementability constraint, let Q∗(θ) be the allocation rule that

pointwise (e.g., for each θ) maximizes the principal’s objective

P (θ) : Q∗(θ) ∈ arg max
p∈[0,1]

(
θp− g(p)

1− F (θ)

f(θ)

)
.

Instead of the original problem P (θ) consider the relaxed problem

PR(θ) : Q∗(θ) ∈ arg max
p∈[0,1]

(
θp− ḡ(p)

1− F (θ)

f(θ)

)
.

where ḡ is the convex bi-conjugate (or convex envelope) of g, e.g., the highest convex

function below g. Note that ḡ(0) = 0 and that ḡ(1) = 1. Several useful properties

that hold for any increasing, convex function ḡ on the interval [0, 1] such that ḡ(0) = 0

and ḡ(1) = 1 are: ḡ is continuos on the interval [0, 1) and has well-defined one-sided

derivatives ḡ′− and ḡ
′
+ on (0, 1) that are non-negative and non-decreasing. Moreover, for

any p < p̂ we know that ḡ′−(p) ≤ ḡ′+(p) ≤ ḡ′−(p̂) ≤ ḡ′+(p̂) and that ḡ′−(p) = ḡ′+(p) = ḡ′(p)

almost everywhere, including at p = 0. In particular, any selection γ(p) ∈ ∂ḡ(p) = [ḡ′−(p),

ḡ′+(p)] is monotonic.18

The objective in PR(θ) is concave in p, and moreover, by the rules of conjugation for

the sum of two functions one of them which is linear, it is also the lowest concave function

above the objective function of P (θ). It is then well-known (see for example Hiriart-Urutty

and Lemarechal [2013]) that p∗ is a maximizer of P (θ) if and only it is a maximizer of

PR(θ) such that

θp∗ − ḡ(p∗)
1− F (θ)

f(θ)
= θp∗ − g(p∗)

1− F (θ)

f(θ)
.

Whenever ḡ 6= g, the bi-conjugate ḡ is affine, and thus the function θp − ḡ(p)1−F (θ)
f(θ)

is

linear and cannot have a maximum in this set. Hence, the maximum in PR(θ) must be

attained for p∗ such that ḡ = g , and this p∗ is also a maximizer of P (θ).

To conclude, if Q∗(θ) that solves PR(θ) is monotonic in θ, then it constitutes a solution

to P. This will be the case, for example, if ḡ′−(1) <∞ and if θ− ḡ′−(1)1−F (θ)
f(θ)

is increasing.19

To see that, consider a selection γ(p) from the subdifferential ∂ḡ(p) = [ḡ′−(p), ḡ′+(p)]. As

γ(p) ≤ ḡ′−(1) for all p ∈ [0, 1], we obtain that θp − γ(p)1−F (θ)
f(θ)

is increasing in θ and

supermodular in (θ, p), inducing the monotonicity of the maximizer Q∗.

18See Hiriart-Urutty and Lemarechal [2013]
19Note how our regularity condition – monotonicity of θ − ḡ′−(1) 1−F (θ)

f(θ) – generalizes the usual “in-

creasing virtual value” that obtains for g(p) = p. A sufficient condition for it to hold is that the condition
holds for all convex functions in the set Φi that generates the agents’ utility.
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Let (γ)−1 denote the pseudo-inverse of the monotonic selection from the subdifferential

γ.20 Defining

θ∗ = inf

{
θ | ḡ′(0) ≤ θf(θ)

1− F (θ)

}
θ∗ = inf

{
θ | ḡ′−(1) ≤ θf(θ)

1− F (θ)

}
we obtain that the optimal allocation is given by

Q∗ (θ) =


0 if θ < θ∗

(γ)−1
[
θf(θ)

1−F (θ)

]
if θ ∈ [θ∗, θ

∗]

1 if θ > θ∗.

Although it seems a bit paradoxical to impose inefficient risks on a risk-averse buyer,

randomization in this interval serves the purpose of weakening the incentive compatibility

constraint: larger payments can be extracted from high types if low types are subjected

to risk (see also Matthews [1983] for a similar feature of the optimal auction in the EU

case with CARA utility). Thus, risk is imposed on a certain type - together with full

insurance! - only to decrease the rent that must be paid to keep him from being mimicked

by larger types that are not be fully insured if they deviate. In particular, it is unnecessary

to impose much risk on a high type since it is unlikely that another buyer with an even

higher type exists.

Technically, randomization should not be a surprise: contrasting classical results that

considered with objectives that are linear or convex in probability where the maximum

must be achieved on an extreme point (see Kleiner at al [2021]), the present problem is

concave.

The revenue-maximizing transfers that implement this upper bound, T ∗w (conditional

20Formally, (γ)−1(s) = inf{p ∈ [0, 1] | γ(p) ≤ s}.
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on receiving an object), and T ∗l (conditional on not receiving an object) are given by21

T ∗l(θ) =


0 if θ < θ∗

−
∫ θ
θ∗
ḡ
(

(γ)−1
[

tf(t)
1−F (t)

])
dt if θ ∈ [θ∗, θ

∗]

−
∫ θ∗
θ∗
ḡ
(

(γ)−1
[

tf(t)
1−F (t)

])
dt− g (1) (θ − θ∗) if θ > θ∗

T ∗w(θ) = θ + T l(θ)

the above defined mechanism (Q∗, T ∗w, T ∗l(θ)) constitutes a solution to the seller’s max-

imization problem.

Example 1 Assume that the bidder’s type is uniformly distributed on the interval [0, 1]

and let g (p) = p2. Then θf(θ)
1−F (θ)

= θ
1−θ and g′ (p) = 2p. Therefore, the optimal allocation

is given by:

Q∗ (θ) =

1
2

θ
1−θ if θ ∈ [0, 2/3]

1 if θ > 2/3
.

The payments in case of losing and winning are given by

T l(θ) =

−
1
4

(
(θ−2)θ
θ−1

+ 2 log(1− θ)
)

if θ ∈ [0, 2
3
]

−θ + 2
3
− 1

4

(
8
3
− 2 log(3)

)
if θ > 2

3

and

Tw(θ) =

θ −
1
4

(
(θ−2)θ
θ−1

+ 2 log(1− θ)
)

if θ ∈ [0, 2
3
]

2
3
− 1

4

(
8
3
− 2 log(3)

)
if θ > 2

3

.

The above finding can be contrasted to the optimal allocation and transfers for a risk-

neutral bidder where g (p) = p. This is given by:

Qr (θ) =

0 if θ ∈ [0, 1
2
]

1 if θ > 1/2

and

Twr (θ) =
1

2
and T lr(θ) = 0 .

In this case the revenue maximizing mechanism is deterministic, a take-it-or-leave-it offer

21We can arbitrarily define the losing payment T l(θ) for θ > θ∗(since the buyer gets then the object
with probability 1), and the winning payment Tw(θ) for θ < θ∗ (since the buyer gets then the object
with probability zero).
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Figure 1: The optimal allocation and transfers in the risk averse case g(p) = p2 (in blue)
and the risk-neutral case g(p) = p (in red) for θ uniformly distributed on [0, 1]. On the
left is the probability of receiving an object as a function of the type. On the right is
the transfer payed by the agent conditional on receiving an object (solid lines) and not
receiving an object (dashed lines).

at a price θ̂ = 0.5 (see Myerson [1981] or Riley & Zeckhauser [1983]). We illustrate the

difference between the optimal mechanisms with and without risk aversion in Figure 1.

Note that the take-it-or-leave-it scheme is incentive compatible even if the agent uses the

present risk-averse preferences (as there is no uncertainty from the buyer’s perspective).

But, the seller increases her expected revenue by switching to the optimal mechanism we

calculated above.

Remark: Our model can be also interpreted as a monopoly screening model where

the designer can choose different qualities and terms of trade for different types. The

standard Mussa-Rosen model with a population of (expected utility) risk averse buyers has

been analyzed by Matthews and Moore [1987] who interpreted quality as the probability

of functioning. Matthews and Moore assume that the cost function is such that the

monopolist never offers the highest quality (corresponding to functioning with probability

one), and illustrate various properties of the optimal menu of offered qualities, prices, and

warranties in case of malfunction. We showed above that, even if the cost of producing

any quality is zero, in our model the monopolist sometimes provides a “damaged” good

plus a full insurance warranty to intermediate types.
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4.2 Revenue Maximization: The n−Bidder Case for Yaari’s Dual

Utility.

In this section we derive the revenue maximizing allocation for bidders with CRA pref-

erences such that the certainty equivalent assigned to a binary lottery is convex in the

probability of the good outcome. This condition is equivalent to a representation of pref-

erences over binary lotteries being a Yaari functional with a convex probability weighting

function. As noted before, many well-known utility theories are represented by functional

forms that differ from Yaari’s on the entire space of random variables but agree with

Yaari’s on the space of binary lotteries (see Appendix A for a partial list). Hence, the

analysis in this Section applies to any CRA utility with the property that there exists an

increasing and convex function g : [0, 1]→ [0, 1] with g(0) = 0 and g(1) = 1 such that

U(x(1, p)) = g (p)

where x(1, p) is a binary lottery that yields 1 with probability p, and zero otherwise.

Example 2 Consider mean-dispersion preferences with linear utility over outcomes (see

Appendix A):

U(x) = E(x)− 1

2
rE [| x− E(x) |]

where r ∈ [0, 1]. This formulation follows the logic of mean-variance preferences, but

is modified to be consistent with FOSD. In case of a binary lottery this functional form

coincides with a Yaari functional generated by

g(p) = p− rp(1− p)

which is convex if r > 0. Our results below show that a seller facing bidders with mean-

dispersion preferences obtains the same revenue as a seller facing bidders with the Yaari

dual utility generated by g!

In this Section we assume that the setting is symmetric in the sense that all bidders

share the same distribution of values F1 = F2 = . . . = F and the same preference over

binary lotteries g1 = g2 = . . . = g. In order to have a more transparent argument, we

assume here that g is (everywhere) differentiable. The argument for the general case,

where g is differentiable almost everywhere, is identical to the one given above in the

1-bidder case, and uses a monotonic selection from the subdifferential of g.
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The seller’s objective function

R =
n∑
i=1

∫ 1

0

[
θiQi(θi)− g(Qi(θi))

1− F (θi)

f (θi)

]
f (θi) dθi

is concave in (Qi)i=1,2...n because g is assumed here to be convex. Thus, without loss of

generality, we can restrict our attention to symmetric mechanisms.22

The main complication relative to the 1-bidder case is the feasibility constraint (see

Border [1991]) on the vector of reduced form allocations Q = (Q1, Q2, ..., Qn). It is well-

known that a necessary and sufficient condition for any symmetric, interim allocation

Qi = Q to be feasible is that, for any subset of types A ⊂ [0, 1],∫
A

Q(t)f(t)dt ≤ 1−
[∫

θ/∈A
f(t)dt

]n
.

In words, the probability that any subset of types wins the object is never higher than

the probability that a type in that set exist . We use below a simpler, relaxed version

of the constraint that holds for any monotonic interim allocations Q, and later verify

that the obtained solution is indeed monotonic and hence feasible. The seller’s (relaxed)

maximization problem over symmetric, implementable reduced-form allocation rules is:

(R) max
Q

n

∫ 1

0

[
θp− g(p)

1− F (θ)

f(θ)

]
f(θ)dθ,

s.t. (a) Q ∈ [0, 1] ;

(b) Q is implementable

(c)

∫ 1

θ

Q(t)f(t)dt ≤
∫ 1

θ

F n−1(t)f(t)dt for any θ ∈ [0, 1].

If a regularity condition holds, then the optimal mechanism is a full-insurance mecha-

nism whose reduced form allocation consists of two parts: for lower types, the seller uses

the same allocation rule - obtained by pointwise maximization - as in the single-buyer

case. For higher types this becomes infeasible, and the seller allocates the object to the

22Consider, for example, the case of two bidders. Suppose there exists an optimal pair (Q∗1, Q
∗
2)

such that Q∗1 6= Q∗2. By symmetry, (Q∗2, Q
∗
1) is also optimal. But then the symmetric allocation rule

(
Q∗

2+Q
∗
1

2 ,
Q∗

2+Q
∗
1

2 ) is also feasible and it is at least as profitable for the seller (since R is concave in
(Q1, Q2)). The generalization to more bidders is straightforward.
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bidder with the highest type. To formally state the result, we define:

θ∗ = inf

{
θ | g′(0) ≤ θf (θ)

1− F (θ)

}
θ∗n = inf

{
θ | g′(F n−1(θ)) ≤ θf(θ)

1− F (θ)

}
.

Theorem 1 (Optimal Allocation) Assume that the function

θ 7→ θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing almost everywhere in [0, 1]. Then, an optimal mechanism is a full-

insurance mechanism that implements the following reduced form allocation rule:

Q∗ (θ) =


0 if θ < θ∗

(g′)−1
[
θf(θ)

1−F (θ)

]
if θ ∈ [θ∗, θ

∗
n]

F n−1(θ) if θ > θ∗n

.

The transfers in the optimal mechanism (Tw, T l) conditional on winning and not winning

an object are given by23

T l (θ) =


0 if θ < θ∗

−
∫ θ
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt if θ ∈ [θ∗, θ

∗
n]

−
∫ θ∗n
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt−

∫ θ
θ∗n
g (F n−1(t)) dt if θ > θ∗n

and Tw (θ) = θ + T l(θ) .

Finally, the revenue in the optimal mechanisms increases in the number of bidders.

We note that the reduced form monotonic allocation Q∗ : [0, 1] → [0, 1] satisfies

by construction the feasibility condition (c) in Problem R above, and hence it can be

generated as the marginal of an allocation rule qi = q∗ : [0, 1]n → [0, 1] (see Border [1991]

or, more recently, Kleiner et al. [2021]). Together with the above constructed transfers

(that only depend on own type and whether the bidder obtains the object or not) this

yields an optimal direct mechanism, as desired.

Example 3 Consider uniformly distributed types on the interval [0, 1] and let gi(p) =

23As in the one-bidder case we specify Tw (θ) for θ < θ∗. This transfer play no role in those cases.
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g(p) = cp2 − cp+ p with 0 < c < 1. Then θ∗ and θ∗n solve

θ∗
1− θ∗

= 1− c; θ∗n
1− θ∗n

= 2c (θ∗n)n−1 − c+ 1,

Assuming c = 1/2 and n = 3, the regularity condition holds, and the optimal solution

is given by Theorem 1 with θ∗ = 1
3

and θ∗3 = 0.397. It is important to note that, on

binary lotteries, the utility associated with g(p) = cp2 − cp + p coincides with both the

disappointment-averse preferences due to Loomes and Sugden [1986], and Jia et al. [2001],

and to the modified mean-variance preferences with linear utility over outcomes analyzed by

Blavatskyy [2010] (see Appendix A). Although these utilities do not generally coincide with

Yaari’s, the revenue maximization schemes for these classes of utility functions coincide

with the one for the Yaari dual utility with the same g.

Example 4 As mentioned earlier, the ε-contamination model studied by Bose et al [2006]

corresponds to the case where ε < 1, g(p) = εp for p < 1 and g(1) = 1. It can be easily

verified that, in this case, the two cutoff points θ∗ and θ∗n coincide, and hence the region of

types where the optimal allocation is random vanishes. Thus, the optimal auction either

assigns the object efficiently (high types) or does not assign at all (low types) - this is

of course consistent with the finding of Bose et al [2006] in their model with ambiguity

aversion.

With a large number of bidders, the interval where the optimal allocation is random

always vanishes:

Corollary 2 Assume that

θ 7→ θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing in [0, 1]. When n→∞, the interval where the optimal allocation is ran-

dom, [θ∗, θ
∗
n] , vanishes, and the limit optimal allocation rule assigns the object efficiently

above a cutoff. The limit interval of excluded types [0, θ∗] is a subset of the interval of

excluded types under risk neutrality, [0, θr∗].

The first statement follows because θ∗n is non-increasing in n, and because limn→∞ θ
∗
n =

θ∗. The second statement follows because θr∗ solves the equation 1 = θf(θ)
1−F (θ)

(that is

independent of n) and because g′(0) ≤ 1. In particular, no type is excluded if g′(0) = 0.

While the length of the intermediate interval, [θ∗, θ
∗
n], depends on the number of the
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bidders, the probability with which each intermediate type gets the object, Q∗(θ) =

(g)−1
[
θf(θ)

1−F (θ)

]
, is independent of n.24

The needed randomization may be difficult to implement in practice since the seller

needs commitment power. Imagine, for example, a realization where all bidders have

intermediate types. Then, with positive probability, no bidder gets the object and all

bidders get positive transfers - but the seller actually prefers to sell to a single bidder.

It is of course difficult to ex-post verify that a randomization was performed with the

pre-committed probabilities. Yet, recall that the optimal mechanism above was specified

in terms of an interim randomization. As we know from Theorem 3 in Gutmann et. al.

[1991], or from Chen et. al. [2019], there exists a feasible and deterministic allocation rule

q∗ with given marginals Q∗. This means that one can always achieve revenue maximization

via a mechanism that does not involve any randomization.

In the risk-neutral case where g(p) = p, the above regularity condition reduces to the

standard requirement that the virtual value θ− 1−F (θ)
f(θ)

is non-decreasing. Our final result

in this Section shows that, under the increasing hazard rate condition, the regularity

condition always holds as n→∞ if g′′ is not too large.

Lemma 2 Assume that g′′ < e. Then, for any distribution F with an increasing hazard

rate there exists n̄ such that for all n ≥ n̄, the function

θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing almost everywhere in [0, 1]. Hence, the monotonicity requirement of

Theorem 1 holds.

Example 5 Köszegi and Rabin’s [2006] loss-averse preferences25 in the version with a

linear utility over outcomes is given by

U(x) = E(x) +

∫ ∫
µ (x− y) dF (x) dF (y)

24The upper bound of the interval is the type whose optimal allocation coincides with the efficient
allocation. Our regularity condition ensures the a crossing only happens once and that the optimal
allocation crosses the efficient one from below. Thus, in this interval the optimal allocation always lies
below the efficient allocation and any interim allocation rule that is strictly smaller than the efficient is
feasible.

25We assume that the agents evaluate gains and losses based on the aggregate payoff, which is jointly
determined by object allocation and monetary transfer.
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where

µ(z) =

{
z if z ≥ 0

λz if z < 0
.

These preferences are risk averse and respect monotonicity (i.e. consistency with FOSD)

if and only if λ ∈ [1, 2]. This functional form is then a special case of Yaari’s dual utility

where g(p) = (2− λ)p + (λ− 1)p2 (see Appendix A). Thus, we obtain that g′′(p) ≤ e for

any λ in the relevant range.

Similar computations can be made for the other examples in Appendix A.

4.3 Revenue Maximization for General CRA Utility Functions

In this section, we briefly discuss the more general case where g(p) = minφ∈Φi
φ(p) is

not necessarily convex. We follow Seierstadt and Sydsaeter [1987] (SS) Chapter 5, and

formulate an optimal control problem while ignoring first the monotonicity constraint.

For ease of reference, we use in this section the standard notation employed in the vast

optimal control literature. We let the control be u(t) = Q(t), and let the state be x(t) =

−
∫ 1

t
u(z)f(z)dz. The symmetric revenue maximization problem becomes then26:

(P ) max
u

∫ 1

0

[tf(t)u(t)− g(u(t))(1− F (t))]dt

subject to the constraints: 1. u ∈ [0, 1] := U ; 2.
·
x = u(t)f(t); 3.

∫ 1

t
F n−1(z)f(z)dz+x ≥

0. The initial condition is x(1) = 0 and the terminal condition is x(0) ∈ [−1, 0].

Because the control u does not appear in the feasibility constraint 3, this is a rather

complex problem with a pure state constraint. The Hamiltonian for Problem (P ) is:

H(u, p, t) = p0[tf(t)u− g(u)(1− F (t))] + p(t)uf(t)

and the Langrangian is:

L(u, p, q, t) = H(u, p, t)− q(t)[uf(t)− F n−1(t)f(t)]

= p0[tf(t)u− g(u)(1− F (t))] + p(t)uf(t)− q(t)[uf(t)− F n−1(t)f(t)]

where p0 ∈ {0, 1} and where p and q are multiplier functions27.

26Note that, in general, the solution of a symmetric problem need not be symmetric because the
problem is not concave anymore.

27For the last term in L observe that :
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An important feature of our problem is that neither Hamiltonian nor Lagrangian

depend on the state variable x. We assume below that x(0) ∈ (−1, 0), i.e. the feasibility

constraint 3 is not binding everywhere28, which yields p0 = 1. Very briefly, the main

necessary conditions are:

1. Since d
dx

(
∫ 1

t
F n−1(z)f(z)dz + x) = 1, it must hold that

d(p∗(t) + q∗(t))

dt
= −dL

dx
= 0 .

Hence, we obtain that

p∗(t) + q∗(t) = constant.

2. q∗ is non-decreasing (and hence by the above condition p∗ is non-increasing), and it

is constant on any interval where the feasibility constraint is not binding:∫ 1

t

F n−1(z)f(z)dz + x∗(t) > 0 .

Theorem 2 1. A solution (x∗, u∗) to (P ) exists, and u∗ = Q∗ is measurable.

2. A solution also exists to the Problem (P ) augmented by the constraint that u is

monotonic.

3. Assume that u is monotonic and that a candidate (x, u) satisfies all necessary con-

ditions (see Theorem 5.2 in SS [1987]). Then (x, u) is optimal.

For example, the proof of Theorem 1 for the special case where g is convex follows by

setting q∗(t) = max{0, t − g′(F n−1(t)1−F (t)
f(t)
} and p∗(t) = −q∗(t). The multiplier q∗(t) is

non-decreasing by the regularity assumptions made in that Theorem. Thus, the same as-

sumption ensuring that q∗ is non-decreasing also ensures that u∗ = Q∗ is non-decreasing,

and hence implementable. In this case sufficiency follows because the maximization prob-

lem is concave in the control u.

The solution to the problem when g is not convex needs to be constructed from the

solution of a relaxed problem where g is replaced by its convex envelope. This is, in

uf(t)− Fn−1(t)f(t) =
d

dx
(

∫ 1

t

Fn−1(z)f(z)dz + x) · dx
dt

+
d

dt
(

∫ 1

t

Fn−1(z)f(z)dz + x)

where the last expression is the total derivative with respect to t of
∫ 1

t
Fn−1(z)f(z)dz + x.

28In that case the solution is simply gven by u∗ = Fn−1.
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principle, analogous to what we did in the 1-bidder case, but is much more complex

because of the feasibility constraint29.

We conclude by comparing the expected (optimal) revenues from agents with different

risk-attitudes: the seller prefers to have bidders who are more risk averse. Recall that

individual preferences are fully characterized by a set Φ of increasing and convex functions

over [0, 1] (Proposition 1).

Definition 4 An agent with preferences represented by the set Φ1 is more risk averse (in

a weak sense) than an agent with preferences represented by set Φ2 if and only if for any

p ∈ [0, 1] we have

g1(p) := min
φ∈Φ1

φ (p) ≤ min
φ∈Φ2

φ (p) =: g2(p).

The above definition is intuitive since it says that the agent with set Φ1 requires

a higher risk premium for binary lotteries than the agent with set Φ2. For example,

the property holds if Φ2 ⊂ Φ1 or if Φ1 = {g1}, Φ2 = {g2} such that g1 is a convex

transformation of g2. It implies that∫
s · dg1(1− Fx(s)) ≤

∫
s · dg2(1− Fx(s)).

In Yaari’s dual utility case this definition suggests that the more risk averse agent is

willing to pay a lower amount of money to purchase any given lottery than the less risk

averse agent (See Definition 5 in Yaari [1986]).

Lemma 3 Consider risk averse, CRA preferences represented by Φ1 and Φ2, respectively,

and assume that g1(p) ≤ g2(p). Then the optimal expected revenue when facing agents

with preferences represented by Φ1 is higher than that obtained when facing agents with

preferences represented by Φ2.

Example 6 Consider Gul’s disappointment-averse preferences with a linear utility over

outcomes (see Appendix A). For binary lotteries, Gul’s functional form is a special case

of Yaari’s preferences with g (p) = p
1+(1−p)β . The parameter β is strictly positive when the

agent is strictly risk-averse. The above Lemma implies that the revenue of a seller who

faces agents equipped with such utility functions is decreasing in β.

Corollary 3 The optimal revenue obtained when facing bidders with CRA risk-averse

preferences represented by Φ is (weakly) smaller than the optimal revenue obtained when

29For the solution to similar problems see Cellina and Colombo [1990] and Amar and Mariconda [1995].
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facing bidders having a Yaari dual utility induced by the function ḡ(p), the convex bi-

conjugate of g(p) := minφ∈Φ1 φ (p).

Together with Theorem 1, the above Corollary offers an explicitly computable upper

bound on the revenue that can be obtained from any risk averse bidders equipped with a

given CRA utility function that satisfies the regularity condition imposed in that theorem.

An analogous lower bound can be obtained by using for the preferences represented by Φ

the optimal allocation for the Yaari dual utility induced by the convex function ḡ(p).

5 Conclusion

We have derived the revenue maximizing mechanism in an auction framework where bid-

ders have non-expected utility preferences that exhibit constant risk aversion of first order.

For all the preferences in this large class, the feasible revenue is driven by the non-linear

function governing the risk premium demanded by bidders on simple, binary lotteries.

This yields a relatively complex variational problem, focused on the limited supply con-

straint. Our main results show how the optimal mechanisms bundles the allocation of the

physical good with the sale of full insurance in order to increase revenue.

We expect our approach to be useful in many in other mechanism design frameworks

where agents have various types of non-expected utility.

Appendix A: CRA Utility Functions

We briefly list and discuss here several well-known preferences classes that satisfy our

axioms and hence are covered by our analysis. We show that the behavior induced by

all these utility functions coincides with the behavior induced by a Yaari utility for the

class of binary lotteries - this is the only set of lotteries that is relevant for our revenue

derivations.

1. Gul’s disappointment-averse preferences with linear utility over outocmes30:

U(x) =
α

1 + (1− α)β
E[x|x ≥ CE(x)] +

(1− α) (1 + β)

1 + (1− α)β
E[x|x < CE(x)]

30Note that this standard representation is only implicit because it uses the simultaneously defined
certainty equivalent. For a representation that avoids this see Cerreia-Vioglio, Dillenberger and Ortoleva
[2020].

29



where CE(x) is a certainty equivalent of lottery x ∈ X, α is the probability that the

outcome of the lottery is above its certainty equivalent, and β is a parameter. Risk

aversion corresponds to β > 0 (see Gul [1991], Theorem 3). Diversification for β > 0

follows by quasi-concavity (Proposition 3, Dekel [1989]) that in turn follows from

the betweenness property of Gul’s preferences. For binary lotteries, Gul’s functional

form above is a special case of Yaari’s preferences: assuming a binary lottery with

x1 > x2 we obtain

U(x) = g (p)x1 + (1− g (p))x2

where g (p) = p
1+(1−p)β is convex in p, the probability of x1.

2. Versions of the disappointment aversion theories due to Loomes and Sugden [1986],

and Jia et al. [2001] with linear utility over outcomes:

U(x) = E(x) + (eE [max {x− E(x), 0}] + dE [min {x− E(x), 0}])

where e > 0, d > 0. We can rewrite the above as:

U(x) = E(x) + (e− d)E [max {x− E(x), 0}]

Super-additivity follows from Theorem 3 in Rockafellar et al. [2006] if d > e. For a

binary lottery with x1 > x2 we obtain

U(x) = g (p)x1 + (1− g (p))x2

where g (p) = p(1 + e−d) + (d− e)p2 that is convex in p, the probability of outcome

x1, if d > e. Hence, for binary lotteries, this is also a special case of Yaari’s dual

utility.

3. Köszegi and Rabin’s [2006] loss-averse utility (see also the theory of disappointment

without prior due to Delquié and Cillo [2006]). In the version with linear utility

over outcomes (See Masatlioglu and Raymond [2016]) this is given by.

U(x) = E(x) +

∫ ∫
µ (x− y) dF (x) dF (y)

where

µ(z) =

{
z if z ≥ 0

λz if z < 0
.
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These preferences respect monotonicity (i.e. consistency with FOSD) if and only

if λ ∈ [0, 2]. This functional form is a special case of Yaari’s dual utility with

g(p) = (2− λ)p+ (λ− 1)p2 (see Proposition 4 in Masatlioglu and Raymond[2016]).

g is convex in p for λ ≥ 1.31

4. Modified Mean-Variance preferences (see Blavatskyy [2010]) with linear utility over

outcomes:

U(x) = E(x)− 1

2
rE [| x− E(x) |]

where r ∈ [0, 1]. The modification relative to the standard mean-variance pref-

erences is needed in order to ensure monotonicity (i.e., consistency with FOSD).

Super-additivity follows from Theorem 3 in Rockafellar et al. [2006]. In case of a

binary lottery with outcoms x1 > x2, this functional form is again a special case of

Yaari’s preferences:

U(x) = g(p)x1 + [1− g(1− p)]x2

where

g(p) = p− rp(1− p)

is convex in p for any r > 0.

Appendix B: Proofs

Proof of Lemma 1: Let Φi = {φi} be a singleton, in which case Ui is a Yaari dual

utility functional. For any comonotonic random variables x, y ∈ X such that x + y ∈ X,
an Yaari dual utility is additive (see Yaari [1987]):

Ui(x+ y) = Ui(x) + Ui(y)

Moreover, a Yaari functional Ui exhibits risk-aversion if and only if it is generated by a

convex function φi. Meilijson and Nadas [1979] have shown that if the random vector

(x′1, ..., x
′
N) is comonotonic and has the same marginals as (x1, ..., xN) then

∑N
i=1 x

′
i ≥cx∑N

i=1 xi, where cx denotes the convex stochastic order32. Together, these observations

imply that if φi is convex (i.e., if the agent is risk averse) then for any two random variables

31For λ = 1 the model reduces to the standard EU risk neutral preferences.
32This is the standard relation used in the mathematical literature for the opposite of second-order

stochastic dominance.
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x, y ∈ X, it holds that

Ui(x+ y) ≥ U(x′ + y′) = Ui(x′) + Ui(y′) = Ui(x) + Ui(y) ,

where x′, y′ have the same distribution as x, y, respectively, and are comonotonic. The

last equality follows by law-invariance. It is easily seen that superadditivity extends to a

minimum over Yaari functionals.

Finally, note that any utility functional that satisfies superadditivity and positive

homogeneity also satisfies concavity33 (and hence also diversification):

Ui(αx+ (1− α)y) ≥ Ui(αx) + Ui((1− α)y) = αUi(x) + (1− α)Ui(y) .

Proof for Proposition 2: For an incentive compatible mechanism (q, t) associated with

equilibrium certainty equivalents V1(·, q, t), . . . , Vn(·, q, t), we define another mechanism

(q,T ) such that the allocation rule remains the same, while the transfers in the new

mechanism (q,T ) only depend on whether agents receive the object or not. Moreover,

once the agent knows her type, her utility in (q,T ) is a constant:

Ti(θ, r) =

θi − Vi(θi, q, t) if r ∈ Wi(θ)

−Vi(θi, q, t) else
.

By construction, the mechanism (q,T ) is a full-insurance mechanism. Since Ui(b) = b for

any b ∈ R, if (q,T ) is incentive compatible then it yields the same utility for each agent

(given her type) as (q, t):

Vi(θi, q,T ) = Vi(θi, q, t).

We show below that:

(a) (q,T ) is incentive compatible and

(b) (q,T ) is at least as profitable for the seller as (q, t).

(a) Note that a bidder’s ex-post payoff from deviating in the original mechanism

(q, t) and reporting θ′i instead of θi equals the sum of two lotteries: the lottery obtained

by the type θ′i agent who reports truthfully - this is here a constant - and the lottery

1{r∈Wi(θ
′
i,θ−i)}(θi − θ′i). Incentive compatibility of (q, t) and superadditivity imply that,

33See also Föllmer and Schied [2011] who show that every pair of these axioms imply the third.
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for any θi and θ′i,

Vi(θi; q, t) ≥ Vi(θi, θ
′
i; q, t) ≥ Vi(θ

′
i; q, t) + Ui

(
1{r∈Wi(θ

′
i,θ−i)}(θi − θ

′
i)
)

By construction, the last inequality implies that

Vi(θi; q,T ) ≥ Vi(θ
′
i; q,T ) + Ui

(
1{r∈Wi(θ

′
i,θ−i)}(θi − θ

′
i)
)

= Ui
(
Vi(θ

′
i; q,T ) + 1{r∈Wi(θ

′
i,θ−i)}(θi − θ

′
i)
)

= Ui
(
1{r∈Wi(θ

′
i,θ−i)}θ

′
i − Ti (θ′i,θ−i, r) + 1{r∈Wi(θ

′
i,θ−i)}(θi − θ

′
i)
)

= Vi(θi, θ
′
i; q,T )

where the second line follows from cash invariance and where the third line follows from

the property that the utility of a constant equals that constant. Since the right-hand-side

is exactly the value the agent obtains from deviating in the mechanism (q,T ), we have

thus shown that (q,T ) is incentive compatible.

(b) As the ex-post payoff in the constructed mechanism (q,T ) is independent of θ−i

and r, cash invariance implies that

Vi(θi; q, t) = Vi(θi; q,T ) + Ui (Ti(θ, r)− ti(θ, r) )

As Vi(θi; q, t) = Vi(θi; q,T ) by construction, it must hold that

0 = Ui (Ti(θ, r)− ti(θ, r)) .

By weak risk aversion, an upper bound on this value is given by the expectation of the

random variable Ti(θ, r)− ti(θ, r) :

0 = Ui
(
Ti(θ, r)− ti(θ, r)

)
≤ E[Ti(θ, r)− ti(θ, r) | θi] ,

which further implies

E[Ti(θ, r)− ti(θ, r) | θi] ≥ 0.

We have thus established that the new mechanism (q,T ) leads to a weakly higher ex-

pected revenue than the original mechanism (q, t).

Proof for Proposition 3: Note that for all i, gi(p) is non-decreasing, satisfies gi(0) = 0,

gi(1) = 1, and

gi(p) = Ui(x(1, p)) ≤ p.
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We thus obtain for any Qi(θi) that:

1− gi(1−Qi(θi)) ≥ Qi(θi) ≥ gi(Qi(θi)).

Both inequalities hold with equality only if gi(p) = p (risk-neutrality) or if Qi(θi) ∈ {0, 1}.
(Necessity): Fix a full-insurance mechanism (q, T ) that implements Q. Let Vi(θi)

denote the certainty equivalent that agent i of type θi obtains in that mechanism. With a

slight abuse of notation, we also use Vi(θi) to denote the lottery which yields a safe payoff

of Vi(θi) ∈ R.

Let xi(εi, Qi(θ
′
i)) denote the lottery that yields εi with probability Qi(θ

′
i) and 0 oth-

erwise. If agent i of type θi deviates and reports to be of type θ′i, he will obtain a lottery

that is the sum of Vi(θ
′
i) and xi(θi−θ′i, Qi(θ

′
i)). As the mechanism is incentive compatible,

we have that, for any i and any θi, θ
′
i ∈ [0, 1],

Ui
(
Vi(θi)

)
≥ Ui

(
Vi(θ

′
i) + xi(θi − θ′i, Qi(θ

′
i))
)
.

By cash invariance, the above formula implies

Vi(θi) ≥ Vi(θ
′
i) + Ui(xi(θi − θ′i, Qi(θ

′
i)) .

Assume first that θi > θ′i. Subtracting Vi(θ
′
i) and dividing by θi − θ′i yields that

Vi(θi)− Vi(θ′i)
θi − θ′i

≥ Ui(xi(θi − θ
′
i, Qi(θ

′
i))

θi − θ′i
.

The continuity of Ui together with homogeneity yields

lim sup
θ′i↗θi

Vi(θi)− Vi(θ′i)
θi − θ′i

≥ lim sup
θ′i↗θi

Ui(xi(θi − θ′i, Qi(θ
′
i))

θi − θ′i
= Ui(xi(1, Qi(θi)))

= gi(Qi(θi)). (2)

Similarly, for any θi < θ′i, we obtain that

Vi(θi)− Vi(θ′i)
θi − θ′i

≤ Ui(xi(θi − θ
′
i, Qi(θ

′
i))

θi − θ′i
.

which implies
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lim inf
θ′i↘θi

Vi(θi)− Vi(θ′i)
θi − θ′i

≤ lim inf
θ′i↘θi

Ui(xi(θi − θ′i, Qi(θ
′
i))

θi − θ′i
= −Ui(xi(−1, Qi(θi)))

= 1− Ui(xi(1, 1−Qi(θi)))

= 1− gi(1−Qi(θi)) = 1− gi(1−Qi(θi)) (3)

where the first equality follows from positive homogeneity and the second equality follows

from cash invariance: 1 + Ui(xi(−1, Qi(θi))) = Ui(xi(1, 1−Qi(θi))).

Combining 2 and 3 yields that V is Lipschitz continuous and thus almost everywhere

differentiable.

(Sufficiency) Consider now a reduced form allocation ruleQ for which each component

is non-decreasing and a mechanism such that

gi(Qi(θi)) ≤ V ′i (θ) ≤ 1− gi(1−Qi(θi)).

The value of type θi of deviating and reporting type θ′i < θi is given by

Vi(θ
′
i) + Ui(xi(θi − θ′i, Qi(θ

′
i))) = Vi(θ

′
i) + gi(Qi(θ

′
i))(θi − θ′i)

= Vi(θi)−
∫ θi

θ′i

[V ′i (z)− gi(Qi(θ
′
i))] dz

≤ Vi(θi)−
∫ θi

θ′i

[
V ′i (z)− gi

(
lim sup
s↗z

Qi(s)

)]
dz ≤ Vi(θi) .

Here, the first inequality follows from the assumption that Qi is non-decreasing and θ′i ≤ z.

The second inequality follows from the assumption on V ′i and establishes that the agent

does not want to deviate by under-reporting his value.

It is left to show that the agent cannot profitable deviate by reporting a value θ′i > θi.
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Over-reporting yields

Vi(θ
′
i) + Ui(xi(θi − θ′i, Qi(θ

′
i))) = Vi(θ

′
i)− (θ′i − θi) [1− gi (1−Qi(θ

′
i))]

= Vi(θi) +

∫ θ′i

θi

[V ′i (z)− (1− gi(1−Q(θ′i)))] dz

≤ Vi(θi) +

∫ θ′i

θi

[
V ′i (z)−

(
1− gi(1− lim inf

s↘z
Q(s))

)]
dz

≤ Vi(θi) .

This completes the proof.

Proof for Corollary 1 1. As both gi(Qi(θi) and 1 − gi(1 − Qi(θi)) are bounded and

thus Riemann integrable, Proposition 3 implies

Vi(0) +

∫ θi

0

gi(Qi(t)dt ≤ Vi(θi) ≤ Vi(0) +

∫ θi

0

[1− gi(1−Qi(θi))] dt.

In order to derive the upper bound on the revenue, note first that, in a full insurance

mechanism, the expected revenue raised from agent i of type θi is given by

Ti(θi) = Qi(θi)θi − Vi(θi) .

Thus, total revenue satisfies

n∑
i=1

∫ 1

0

Ti(θi)fi(θi)dθi =
n∑
i=1

∫
[Qi(θi)θi − Vi(θi)] fi(θi)dθi

≤
n∑
i=1

∫ 1

0

[
Qi(θi)θi − Vi(0)−

∫ θi

0

gi(Qi(t))dt

]
fi(θi)dθi

=
n∑
i=1

∫ 1

0

[
θiQi(θi)−

1− Fi (θi)
fi (θi)

gi(Qi(θi))

]
fi (θi) dθi −

∑
i=1,2...n

Vi(0)

where we used integration by parts, gi(0) = 0 and gi(1) = 1 to obtain the last equality.

Analogously, the lower bound for the total revenue is given by

n∑
i=1

∫ 1

0

[
θiQi(θi)−

1− Fi (θi)
fi (θi)

[1− gi(1−Qi(θi))]

]
fi (θi) dθi −

n∑
i=1

Vi(0)
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2. The second part directly follows from the first part together with Proposition 2.

Proof for Proposition 4: Fix any full-insurance mechanism (q, T ) that implements

Q. Let Vi(θi) denote the certainty equivalent that agent i of type θi obtains in that

mechanism. Let x(θi− θ′i, Qi(θ
′
i)) be the lottery that yields θi− θ′i with probability Qi(θ

′)

and 0 otherwise; l(θi−θ′i, Qi(θ
′
i)) ≡ x(θi−θ′i, Qi(θ

′
i))−Q(θ′i)(θi−θ′i) is a mean-zero lottery.

As the mechanism is incentive compatible we have that for all θ′i < θi,

Vi(θi) ≥ Vi(θ
′
i) +Qi(θ

′
i)(θi − θ′i) + l(θi − θ′i, Qi(θ

′
i)) .

Note that in the above formula, Vi(θi) and Vi(θ
′
i) +Qi(θ

′
i)(θi − θ′i) are both constants.

For any constant b and any lottery l, let πi(b, l) be the risk premium assign to the

combined lottery b+ l. By definition of the risk premium the above equation is equivalent

to

Ũi
(
Vi(θi)

)
≥ Ũi

(
Vi(θ

′
i) +Qi(θ

′
i)(θi − θ′i)− π(Vi(θ

′
i) +Qi(θ

′
i)(θi − θ′i), l(θi − θ′i, Qi(θ

′
i))
)

⇐⇒ Vi(θi) ≥ Vi(θ
′
i) +Qi(θ

′
i)(θi − θ′i)− π(Vi(θ

′
i) +Qi(θ

′
i)(θi − θ′i), l(θi − θ′i, Qi(θ

′
i)) .

Subtracting V (θ′i) and dividing by (θi − θ′i) yields that

Vi(θi)− Vi(θ′i)
θi − θ′i

≥ Qi(θ
′
i)−

1

θi − θ′i
π
(
Vi(θ

′
i) +Qi(θ

′
i)(θi − θ′i), l(θi − θ′i, Qi(θ

′
i))
)
.

Taking the lim sup on both sides yields

lim sup
θ′i↗θi

Vi(θi)− Vi(θ′i)
θi − θ′i

≥ lim sup
θ′i↗θi

Qi(θ
′
i)− lim sup

θ′i↗θi

1

θi − θ′i
π
(
Vi(θi), l(θi − θ′i, Qi(θ

′
i))
)

= Qi(θi)− lim sup
θ′i↗θi

1

θi − θ′i
π
(
Vi(θi), l(θi − θ′i, Qi(θ

′
i))
)

= Qi(θi)

The last equality follows from the definition of second-order risk aversion. As Qi(θi) is

bounded and Riemann integrable, the above implies

Vi(θi) ≤ Vi(0) +

∫ θi

0

Qi(t)dt
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The above inequality further implies that the seller’s expected revenue satisfies

R̃(Q) ≤
n∑
i=1

∫ 1

0

[
θiQi(θi)−Qi(θi)

1− Fi (θi)
fi (θi)

]
fi (θi) dθi −

∑
i=1,2...n

Vi(0) .

as desired.

Proof of Theorem 1: 1. For every positive measure λ on [0, 1] and every feasible Q we

have that ∫ 1

0

∫ 1

θ

[Q(s)− F n−1(s)]f(s)ds dλ(θ) ≤ 0 .

Changing the order of integration yields that the above condition is equivalent to∫ 1

0

λ([0, s])
(
Q(s)− F n−1(s)

)
f(s)ds ≤ 0 .

Consequently, for every λ and every feasible Q , an upper bound on the objective function

is given by∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)
− λ([0, θ])

(
Q(θ)− F n−1(θ)

)]
f(θ)dθ . (4)

Setting λ([0, θ]) = max{θ − g′(F n−1(θ))[1− F (θ)]/f(θ), 0} the above value simplifies to∫ θ∗

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)

]
f(θ)dθ

+

∫ 1

θ∗

[
Q(θ)g′(F n−1(θ))− g(Q(θ))

]
(1− F (θ)) dθ +

∫ 1

θ∗
λ([0, θ])F n−1(θ)dθ .

(5)

As g is convex, it lies at almost every point above its tangent, and we obtain for almost

every θ ∈ [θ∗, 1] and all q ∈ [0, 1]

g(F n−1(θ)) + g′(F n−1(θ))(q − F n−1(θ)) ≤ g(q) .

This is equivalent to

q g′(Q∗(θ))− g(q) ≤ Q∗(θ) g′(Q∗(θ))− g(Q∗(θ)) ,

for almost every θ ∈ [θ∗, 1] and all q ∈ [0, 1]. Thus Q∗ is a pointwise maximizer of the

relaxed problem (5). As Q∗(θ) = F n−1(θ) for θ ∈ [θ∗, 1] and λ([0, θ]) = 0 for θ ∈ [0, θ∗] we
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have that ∫ 1

0

λ([0, θ])
(
Q(θ)− F n−1(θ)

)
f(θ)dθ = 0

Thus, the upper bound on the virtual value given in (4) is achieved by (λ,Q∗). Denote

by D = {Q̂ : [0, 1]→ [0, 1] such that
∫ 1

θ
Q̂(s)f(s)ds ≤

∫ 1

θ
F n−1(s)f(s)ds for all θ ∈ [0, 1]}.

As Q∗ ∈ D we obtain

max
Q∈D

∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)

]
f(θ)dθ

≤ max
Q∈D

∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)
− λ([0, θ])

(
Q(θ)− F n−1(θ)

)]
f(θ)dθ

=

∫ 1

0

[
θQ∗(θ)− g(Q∗(θ))

1− F (θ)

f(θ)
− λ([0, θ])

(
Q∗(θ)− F n−1(θ)

)]
f(θ)dθ

=

∫ 1

0

[
θQ∗(θ)− g(Q∗(θ))

1− F (θ)

f(θ)

]
f(θ)dθ .

This establishes that Q∗ is optimal if it can be implemented in an incentive compatible

full-insurance mechanism. As shown in Proposition 3 a sufficient condition is that Q∗

is non-decreasing. As g is convex, g′ and g′−1 are non-decreasing, and thus Q∗ is non-

decreasing. This completes the proof of part 1.

2. Let Qn be the optimal reduced form allocation with n bidders, i ∈ {1, ..., n}.
Assume now that there are n + 1 bidders, i ∈ {1, ..., n, n + 1}. Using the allocation Qn

for bidders 1, ..., i− 1, i+ 1, ..., n+ 1 while completely excluding bidder i is a feasible (i.e.,

incentive compatible and individually rational mechanism) in the n + 1 bidder problem.

Each of these proposed asymmetric allocations yields the same revenue as the optimal

mechanism for the n bidder problem. Averaging these n+1 asymmetric allocations yields

a symmetric, feasible allocation for the n + 1 bidder problem. By the concavity of the

revenue, the symmetric average allocation yields a higher revenue than each asymmetric

one. In particular, the optimal allocation for the n+ 1 bidder problem (that is known to

be symmetric) yields at least as much revenue as the optimal allocation for the n bidder

problem.

Proof for Lemma 2: Taking the derivative of the function

θ − g′(F n−1(θ))
1− F (θ)

f(θ)
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yields

1− g′(F n−1(θ))

[
1− F (θ)

f(θ)

]′
− (n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)]

As we have assumed a monotone hazard rate, the second terms is always non-negative.

We now show that, for n large enough,

(n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)] ≤ 1

holds for any θ ∈ [0, 1], which implies the result. Note that, over p ∈ [0, 1],

(n− 1)pn−2(1− p)

is maximized at p = n−2
n−1

. Plugging in p = n−2
n−1

yields that

max
p∈[0,1]

(n− 1)pn−2(1− p) ≤
(
n− 2

n− 1

)n−2

.

Hence

lim
n→∞
{(n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)]}

< e · lim
n→∞

(
n− 2

n− 1

)n−2

= 1

as desired.

Proof of Theorem 2: 1. The admissible set {x(t), u(t)} is non-empty, convex and

compact, and the functions that appear in the integrand and in the constraints, namely

tf(t)u − gmin(u)(1 − F (t)), uf(t), and
∫ 1

t
F n−1(z)f(z)dz + x, are continuous in their

respective variables t, u, x. Existence follows by Theorem 5.5 in SS [1987].

2. This folllows by the above continuity condition and by the observation that the set

of monotonic functions that satisfy the feasibility constraint 3 is convex and also compact

in the L1 strong topology (see Kleiner et al [2021]).

3. Recall that the Hamiltonian H is independent of the state x, and that the feasibility

constraint
∫ 1

t
F n−1(z)f(z)dz + x ≥ 0 is linear in x. Sufficiency follows then by Theorem

5.1 in SS [1987].

Proof for Lemma 3: By Corollary 1 the expected revenue in the optimal mechanism is
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given by

Rj∗ = n

∫ 1

0

[
θQj∗(θ)− 1− F (θ)

f (θ)
g1(Qj∗(θ))

]
f (θ) dθ,

where Qj∗ is the optimal allocation when utilities are represented by set Φj, j = 1, 2. We

obtain the following inequalities

R2∗ = n

∫ 1

0

[
θQ2∗(θ)− 1− F (θ)

f (θ)
g2(Q2∗(θ))

]
f (θ) dθ

≤ n

∫ 1

0

[
θQ2∗(θ)− 1− F (θ)

f (θ)
g1(Q2∗(θ))

]
f (θ) dθ

≤ n

∫ 1

0

[
θQ1∗(θ)− 1− F (θ)

f (θ)
g1(Q1∗(θ))

]
f (θ) dθ = R1∗.

The first inequality follows because the allocation Q2∗ is monotone (and hence imple-

mentable also if the preferences are represented by Φ1 and by the comparison of risk

aversions). The second inequality follows because adjusting the allocation rule to be op-

timal given that preferences that are represented by Φ1 further increases the expected

revenue.
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