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Abstract

A basic test of fairness when we divide a “manna” Ω of private
items between n agents is the lowest welfare the rule guarantees to
each agent, irrespective of others’ preferences. Two familiar examples
are: the Equal Split Guarantee (the utility of 1

n
Ω) when the manna

is divisible and preferences are convex; and 1
n
-th of the utility of a

heterogenous non atomic “cake”, if utilities are additive.
The minMax utility of an agent is that of her best share in the

worst possible n-partition of Ω. It is weakly below her Maxmin util-
ity, that of her worst share in the best possible n-partition. The
Maxmin guarantee is not feasible, even with two agents, if non con-
vex preferences are allowed. The minMax guarantee is feasible in the
very general class of problems where Ω is non atomic and utilities are
continuous, but not necessarily additive or monotonic. The proof uses
advanced algebraic topology techniques. And the minMax guarantee
is implemented by the n-person version of Divide and Choose due to
Kuhn (1967).

When utilities are co-monotone (a larger part of the manna is
weakly better for everyone, or weakly worse for everyone) better guar-
antees than minMax are feasible. In our Bid & Choose rules, agents
bid the smallest size (according to some benchmark measure of Ω) of
a share they find acceptable, and the lowest bidder picks such a share.
The resulting guarantee is between the minMax and Maxmin utilities.
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1 Introduction and the punchlines

The fair division of a common property manna – resources privately con-
sumed – between its joint owners is a complicated problem if we also wish
to take efficiently into account differences in individual preferences. When
information about preferences remains private, a coarse yet important bench-
mark attached to a particular division rule is the welfare Guarantee it offers
to each participant. This is the highest welfare that a given agent can secure
in this rule, irrespective of the preferences of other agents, even if our agent
is clueless about the latter and assumes the worst. The more an agent is risk
averse and the less she knows about others’ preferences, the more this worst
case measure matters to her.

Formally we assume that the manna Ω and the domain D of potential
preferences are common knowledge, and define a Fair Guarantee as a map-
ping (ui, n) → Γ(ui;n) selecting for each preference in D, described for clarity
as a utility function ui, and each number n of joint owners, a utility level.
The mapping is fair because it ignores agent i’s identity, and it should be
feasible: for any profile (ui)

n
i=1 of utilities in Dn there must exist a partition

(Si)
n
i=1 of Ω such that ui(Si) ≥ Γ(ui;n) for all i.
The two far reaching questions are: what are the best (highest) Fair

Guarantees in a given division problem (Ω,D)? and what mechanism imple-
ments1 them? Steinhaus’ 1948 paper ([34]) that launched the modern fair
division literature identifies the highest Fair Guarantee in the cake-cutting
model with additive utilities, and proposes a rule to implement it. We pursue
here this program when individual preferences vary in a (much) more general

1In the simple sense of implementation described in the last paragraph of this section.
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domain.
Observe first that any Fair Guarantee Γ(u;n) is bounded above by the

utility of the worst share for u in the best n-partition of the manna. Writing
this benchmark utility as Maxmin(u;n), we have for any Γ,u in D and n

Γ(u;n) ≤ Maxmin(u;n) = max
Π=(Si)ni=1

min
1≤i≤n

u(Si) (1)

where the maximum (that may not be achieved exactly) bears on all n-
partitions Π = (Si)

n
i=1 of Ω. The claim follows at once from the feasibility of

Γ(u;n) at the unanimous profile where ui = u for all i: there is a partition
Π such that u(Si) ≥ Γ(u;n) for all i, hence Γ(u;n) ≤ min1≤i≤n u(Si) ≤
Maxmin(u;n).

Therefore if (u, n) → Maxmin(u;n) is itself a Fair Guarantee (it is fair,
but the issue is feasibility), it is the best possible one and answers the first of
the two general questions above. This happens in two well known and much
discussed families of fair division problems.

Steinhaus assumes the manna Ω is a non atomic measurable space and
D is the set of additive utilities non atomic with respect to the underlying
measure. Additivity of u implies Maxmin(u;n) ≤ 1

n
u(Ω); this is in fact an

equality because by Lyapounov theorem the cake can be partitioned in n
shares of equal utility; the same theorem implies also that the utility profile
( 1
n
ui(Ω))

n
i=1 is feasible. The corresponding welfare lower bound is known

as the Proportional Guarantee: ui(Si) ≥ 1
n
ui(Ω) where Si is agent i’s share.

It is the weakest and omnipresent fairness requirement in the subsequent
cake-cutting literature (surveyed in [13] and [31]).

Consider next the microeconomic model of fair division where the manna
is a bundle ω ∈ RK

+ of K divisible and non disposable items, and D is the set
of convex and continuous preferences over [0, ω] (we make no monotonicity
assumption: items can be desirable or not, preferences can be satiated etc..).
Then Equal Split is the best Fair Guarantee: Maxmin(u;n) = u( 1

n
ω). To

check this pick a hyperplane H supporting the upper contour of u at 1
n
ω;

then the lower contour of u at 1
n
ω contains one closed half-space cut by H ,

and every division of the manna as ω =
∑n

1 zi includes at least one zj in
that half-space. This proves Maxmin(u;n) ≤ u( 1

n
ω); the reverse inequality

is clear. So the Equal Split Guarantee is the uncontroversial starting point
of fairness, satisfied by the standard efficient and fair division rules like the
competitive and egalitarian ones (surveyed in [37] and [27]). 2

2Another example where Maxmin is a feasible guarantee: we divide manna and money
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We generalize substantially both models above by allowing much more
general utilities, and we identify a canonical Fair Guarantee this very large
class of division problems.

As explained in Subsection 3.1, the microeconomic model is in fact a
special case of the cake-cutting model two paragraphs above. Therefore we
state our results in the latter model but use the more intuitive microeconomic
examples for illustration. The manna Ω is measurable and endowed with a
non atomic measure; utilities are continuous in that measure (small changes
in the size of a share result in small utility changes) but otherwise arbitrary:
neither additivity, nor sub- or super-modularity is assumed. We dub this
a non atomic division problem. In our first main result utilities are not
necessarily monotonic either: the manna can be a mixed bag with some
desirable parts (money, tasty cake, valuable and resalable objects), some not
(unpleasant tasks, financial liabilities, burnt parts of the cake that must still
be eaten [32]), and agents may disagree over which parts are good or bad.
Utilities can be single-peaked over some parts (teaching loads, volunteering
time, shares of a risky project), single-dipped on others, and so on.

We show that the “dual” of the canonical upper bound Maxmin(u;n) is
a Fair Guarantee in our general model. This is minMax(u;n), the utility of
the best share for u in the worst possible n-partition of Ω:

minMax(u;n) = min
Π=(Si)ni=1

max
1≤i≤n

u(Si)

where as before the minimum bears on all n-partitions of Ω.
A simple microeconomic example where two agents Ann and Bob share 10

units of a divisible item shows that Maxmin(u;n) is not a feasible Guarantee
when preferences are not convex, and gives some intuition for our general
result. Ann’s preferences are single-peaked, while Bob’s are single-dipped
(see Figure 1 ):

uA(x) = x(12− x) ; uB(x) = x(x− 6) for 0 ≤ x ≤ 10

Compute

Maxmin(uA) = 35 at partition Π1 = {5, 5} ; minMax(uA) = 20 at Π2 = {0, 10}
and utilities are quasi-linear (linear in money) and superadditive. We can use budget
balanced monetary transfers to build a partition of Ω in which each share is worth 1

n
u(Ω):

thus Maxmin(u;n) ≥ 1

n
u(Ω). The reverse inequality follows from superadditivity.

See Remark 2 in Subsection 3.3 for another example in the interval model.
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Maxmin(uB) = 0 at Π2 ; minMax(uB) = −5 at Π1

If Bob’s share is worth at least Maxmin(uB) then either Ann gets the whole
manna or at most 4 units: so her utility is at most 32 hence (Maxmin(uA),Maxmin(uB))
is not feasible. Note that, here and in general, both (Maxmin(uA), minMax(uB))
and (minMax(uA),Maxmin(uB)) are feasible: the former when Ann divides
and Bob chooses, the latter when they exchange roles.

Our first main result, Theorem 1 in Section 4, says that in any non atomic
problem, the mapping u → minMax(u;n) is a Fair Guarantee; in particu-
lar minMax(u;n) ≤ Maxmin(u;n) for all u ∈ D and n ((1)).3 Moreover
minMax is implemented by a simple division rule described two paragraphs
below.

There are two steps in the proof. The first is the critical “equi-partition”
Lemma 1 in Subsection 3.2, stating that each agent can partition any subset
of the manna in shares of equal value to him. Its proof requires advanced tools
in algebraic geometry (see Appendix 7.1). The second step uses Kuhn’s little
known n-person version of Divide and Choose ([19]), denoted here D&Cn,
to implement the minMax Guarantee. This rule works as follows (details in
Section 4):

Agent 1 cuts the manna in n shares presumed of equal value to her; each
other agent reports which of these shares he finds acceptable. A simple
matching algorithm gives one of “her” shares to agent 1, and some other
shares to other agents who accept them (possibly none), making sure that
the shares thus assigned are all unacceptable to the agents not served.

Repeat with the remaining agents and manna.

As noted in the example above, in D&C2 the Divider is guaranteed her
Maxmin utility, the Chooser hisminMax utility. The same applies to D&Cn

for any n: the first Divider is guarantees her Maxmin utility, and everyone
else his minMax utility.

Our second main result, Theorem 2 in Subsection 5.2, focuses on non
atomic problems where preferences are also co-monotone: increasing if en-
larging a share cannot make it worse and we speak of a “good manna”;
decreasing if the opposite holds and we have a “bad manna”. The family
of Moving Knife rules (MKn) due to Dubins and Spanier ([18]) can be used
in either domain. If the manna is good for everyone, they work as follows
(details in Section 5):

3This is an equality if utilities are additive on Ω.
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A knife cuts an increasing share of the cake; agents can stop the knife at
any time; the first agent who does gets the share cut so far.

Repeat between the remaining agents and manna.

If the manna is unanimously bad, each agent can “drop” at any time and
the last one to drop gets the share cut so far.

Under additive positive utilities each agent guarantees his Proportional
Share by stopping the knife in each round exactly when it has cut a share
worth 1

n
-th of the total. In the co-monotone version of our general non atomic

model, it is easy to check that MKn implements a Fair Guarantee between
minMax and Maxmin.

But a Moving Knife rule chooses a single arbitrary path for the knife,
which tightly restricts the range of individual shares and partitions, hence
can result in a very inefficient allocation. To alleviate this serious difficulty,
we introduce a large family of rules in the same spirit that we call the Bid &
Choose (B&Cn) rules. Each rule is defined by fixing a benchmark additive
measure of the shares, diversely interpreted as their size, their market price,
etc.. If the manna is good a bid bi by agent i is the smallest measure of a
share that i finds acceptable: the smallest bidder i∗ chooses freely a share
of measure at most bi∗ , then we repeat between the remaining agents and
manna. For a bad manna the bid bi is the largest size of a share that i finds
acceptable, and the largest bidder i∗ picks any share of size at least bi∗ .

Theorem 2 shows that each B&Cn rule implements a Guarantee between
the minMax and Maxmin level. A handful of microeconomic examples in
Subsection 5.3 show that it improves substantially the minMax Guarantee
and is a legitimate alternative to the Equal Split Guarantee: the latter is
optimal for agents with convex preferences, but for agents with “concave”
preferences (convex lower contours) Equal Split is precisely the minMax
Guarantee, and the B&Cn Guarantee is significantly better.

Throughout the paper we speak of implementation in the very simple
sense adopted by most of the cake cutting literature (e. g., [13]), and for-
malized in the general collective decision context by Barbera and Dutta as
implementation in “protective equilibrium” ([6]). A rule implements (guar-
antees) a certain utility level γ means: no matter what her preferences, each
agent has a strategy that depends also upon the manna and the number of
agents, but nothing else, such that whatever other agents do the utility of her
share is no less than γ. Moreover the “guaranteeing strategy” is essentially
unique.
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2 Relevant literature

The two welfare levels Maxmin and minMax are key to our results. They
are introduced by Budish ([15]) and Bouveret and Lemaitre ([11]) respectively
in the atomic model where the manna is a set of indivisible items. If utilities
are additive the basic inequality of our non atomic model is reversed:

Maxmin(u;n) ≤ 1

n
u(Ω) ≤ minMax(u;n)

and minMax(u;n) is obviously not a feasible Guarantee. It took a couple
of years and many brain cells to check that also the Maxmin lower bound
is not feasible for three or more agents ([30]), though this happens in rare
instances of the model ([21]).4 Our paper is the first systematic discussion
of these two bounds in the non atomic model of cake division.

Kuhn’s 1967 n person generalisation of Divide and Choose ([19]) promptly
implements the minMax guarantee. Except for a recent discussion in [1]
for additive utilities, it has not received much attention, a situation which
our paper may help to correct. In particular, unlike the Diminishing Share
([34]), Moving Knife ([18]), and Bid and Choose rules, it is very well suited
to divide mixed manna, i. e., containing subjectively good and bad parts, as
is typically the case when we divide the assets and liabilities of a dissolving
partnership. Agents applying the D&Cn rule to a mixed manna are never
asked to report which parts they view as good or bad: e. g. if we divide tasks,
I may not want others to know which ones I am actually happy to perform.
Introduced in [10] and [9] for the competitive fair division of commodities in
the microeconomic model, the mixed manna model is discussed by [32] for a
general cake, and by [4] for indivisible items.

The “equi-partition” Lemma (Subsection 3.2) is critical to the proof of
Theorem 1, and proved by algebraic geometry techniques. Similarly, subtle
variants of Sperner’s Lemma are used in recent results to prove the existence
of an Envy Free division under very general preferences, where which share
I like best in a given partition can depend upon the partition itself, not just
upon my own share: Stromquist’s ([35]) and Woodall’s ([38]) seminal insights
are considerably strenghtened by the combined results in [36], [32], [24] and
[3]. However all these results assume that, either no agent prefers the empty

4If the manna is atomic and utilities are not necessarily additive, it is easy to construct
examples showing that all six orderings of Maxmin, minMax, and 1

n
u(Ω) are possible.
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share to a non zero share, or all agents always prefer the empty share to any
non zero share: this rules out the mixed manna case.

The concept of unanimity utility (the common efficient utility level in the
economy where everyone has the same preferences) leads to the Equal Split
Guarantee when we divide private goods and preferences are convex (see the
proof of inequality (1)).When applied to fair division problems involving pro-
duction, it defines some compelling Fair Guarantees as well as some minimal
upper bounds on individual welfare: [26], [25].

Privacy preservation is a growing concern in a world of ever expanding
information flows. The iconic Divide and Choose rule between two agents
stands out for its informational parsimony: Divider only reports, whether
this is true or not, that she is indifferent between the two shares of the cake
she just cut, then Chooser reveals only the binary comparison of these shares.
A related advantage is that each report requires a modest cognitive effort,
neither Divider nor Chooser needs to form complete preference relations over
all shares of the cake. These properties are preserved by the n person version
D&Cn of the rule.

Taking this concern to heart, the large cake cutting literature following
Steinhaus’ seminal paper evaluates the informational complexity of various
mechanisms by the number of “cuts” and “queries” they involve: see [13] or
[31], and more recently [16] and [17]. It also goes beyond the Proportional
Guarantee, and looks for cuts and queries mechanisms reaching an Envy
Free division of the cake. The algorithms in Brams and Taylor ([12]), and
more recently Aziz and McKenzie ([5]), do exactly this when utilities are
additive and non atomic; but because they involve an astronomical number
of cuts and queries they are of no practical interest and squarely contradict
informational parsimony. See ([14], [20]) for some fine tuning of these general
facts.

3 Non atomic fair division

3.1 Basic definitions

The manna Ω is a bounded measurable set in an euclidian space, endowed
with the Lebesgue measure | · |, and such that |Ω| > 0. A share S is a possibly
empty measurable subset of Ω, and B is the set of all shares. A n-partition
of ⊗ is a n-tuple of shares Π = (Si)

n
i=1 such that ∪n

i=1Si = Ω and |Si∩Sj | = 0

8



for all i 6= j; and Pn(Ω) is the set of all partitions of ⊗. We define similarly
an n-partition of S for any share S ∈ B, and write their set as Pn(S).

If S ⊗ T = (S ∪ T )�(S ∩ T ) is the symmetric difference of shares,
recall that δ(S, T ) = |S ⊗ T | is a pseudo-metric on B (a metric except that
δ(S, T ) = 0 iff S and T differ by a set of measure zero).

A utility function u is a mapping from B into R such that u(∅) = 0
and u is continuous for the pseudo-metric δ and bounded. So u does not
distinguish between two shares at pseudo-distance zero (equal up to a set of
measure zero): for instance u(S) = 0 if |S| = 0. Also if the sequence |St|
converges to zero in t, so does u(St). We write D(Ω) for this domain of utility
functions.

So a non atomic division problem consists of (Ω,B, (ui)
n
i=1 ∈ D(Ω)n).

Several subdomains of D(Ω) play a role below:

• additive utilities: u ∈ Add(Ω) iff u(S) =
∫
S
f(x)dx for all S, where f

is bounded and measurable in Ω;

• monotone increasing: u ∈ M+(Ω) iff S ⊂ T =⇒ u(S) ≤ u(T ) for all
S, T ;

• monotone decreasing: u ∈ M−(Ω) iff S ⊂ T =⇒ u(S) ≥ u(T ) for all
S, T ;

• separable: u ∈ S(Ω) iff there is a finite set A, a partition (Ca)a∈A ∈
P|A|(⊗) of Ω, and a continuous function v from RA

+ into R, such that
u(S) = v((|S ∩ Ca|)a∈A) for all S ∈ B.

The separable domain S(Ω) captures the standard microeconomic fair
division model: A is a set of divisible commodities, the manna is the bundle
ω ∈ RA

+ such that ωa = |Ca| for all a, a share Si gives to agent i the amount
zia = |Si ∩Ca| of commodity a, and the partition Π = (Si)

n
i=1 corresponds to

the division of the manna as ω =
∑n

1 zi .
In the general non atomic division problem, the set of shares B is not com-

pact for the pseudo-metric δ. It follows that when we maximize or minimize
utilities over shares, or look for a partition achieving a benchmark utility
minMax or Maxmin, we cannot claim the existence of an exact solution to
the program: the minMax is not a true minimum, only an infimum, and
Maxmin is only a supremum, not a true maximum. As this will cause no
confusion, we stick to the min and Max notation throughout.
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However in the microeconomic model, the set of shares and of partitions
are both compact so for this important set of problems (where all our exam-
ples live) the min and Max notation are strictly justified.

One can also specialise the general model by imposing constraints on the
set of feasible shares. The most important instance is the familiar interval
model, where the manna is Ω = [0, 1] and a share must be an interval, so
an n-partition is made of n adjacent intervals. Other instances assume Ω
is a polytope, and shares are polytopes of a certain type: e.g. triangles or
tetrahedrons ([33]). And sometimes shares must be connected subsets of Ω
([7], [2]).

The Divide and Choosen rules, as well as our Bid and Choosen rules, do
not work in these models5, so our Theorems 1 and 2 do not apply. But the
interval model is still useful here in a technical sense: the proof of the critical
Lemma 1 in Appendix 7.1 starts by projecting the general problem onto an
interval model and proving existence of an equipartition there.

3.2 Equi-partitions

Definition 1 An n-equipartition of the share T ∈ B for utility u ∈ D(T )
is a partition Πe = (Si)

n
i=1 ∈ Pn(T ) such that u(Si) = u(Sj) for all i, j ∈

{1, · · · , n}; we write u(Πe) for this common value, and EPn(T ; u) for the set
of these n-equipartitions.

It is clear that EPn(S; u) is non empty if u is additive: if B[S] is the subset
of shares included in S, Lyapunov Theorem implies that the range u(B[S])
is convex, so it contains 1

n
u(S); then we replace n by n − 1 and repeat the

argument on the remaining share.
The same is true if u is monotone (u ∈ M±(Ω)), and the proof, outlined

in Remark 1 below, is still fairly simple. But the proof of the next statement
is much harder.

Lemma 1

Fix a share S ∈ B and a utility u ∈ D(Ω). The set EPn(S; u) of n-
equipartitions of S at u is non empty.

Remark 1 It is easy to prove EPn(S; u) 6= ∅ if we assume that the sign
of u is constant: all shares are weakly preferred to the empty share, or all

5For instance in the interval model, the first divider can find an equipartition made of
adjacent intervals (by our Lermma 1), but the next agent called to divide typically cannot
do so pick from disconnected intervals.
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are weakly worse. Use first a Moving Knife as in Appendix 7.1 to project the
model onto an interval model: in the latter model, a partition is identified with
a point in the simplex of dimension n−1. We apply the Knaster–Kuratowski–
Mazurkiewicz Lemma to the closed sets Qi of partitions of the interval where
the i-th interval gives the lowest utility: each Qi contains the i-th face of
the simplex and their union covers it entirely: thus their intersection is non
empty. One can also invoke the stronger results in [35] and [36] showing the
existence of an Envy Free partition under this assumption. But recall that
a key feature in the division of a mixed manna is that the sign of u is not

constant across shares.

3.3 Two utility benchmarks

Definition 2 Fix n, the manna (Ω,B) and u ∈ D(Ω):

minMax(u;n) = min
Π∈Pn(Ω)

max
1≤i≤n

u(Si) ; Maxmin(u;n) = max
Π∈Pn(Ω)

min
1≤i≤n

u(Si)

(2)
Recall that minMax is the utility agent u can achieve by having first pick
in the worst possible n-partition of Ω, and Maxmin by having last pick in
the best possible n-partition of Ω.

Proposition 1

i) If u ∈ Add(Ω) then minMax(u;n) = Maxmin(u;n) = 1
n
u(Ω)

ii) If u ∈ M±(Ω)

minMax(u;n) = min
Πe∈EPn(Ω;u)

u(Πe) ; Maxmin(u;n) = max
Πe∈EPn(Ω;u)

u(Πe) (3)

iii) If u ∈ D(Ω)

minMax(u;n) ≤ min
Πe∈EPn(Ω;u)

u(Πe) ≤ max
Πe∈EPn(Ω;u)

u(Πe) ≤ Maxmin(u;n)

(4)

Proof

Statement iii) If Πe is an n-equipartition, u(Πe) is the utility of its best share,
hence minMax(u;n) ≤ u(Πe); proving the other inequality in (4) is just as
easy.
Statement i) By additivity of u, for any n-partition Π we have maxi u(Pi) ≥
1
n
u(Ω) implying minMax(u;n) ≥ 1

n
u(Ω); we check symmetrically 1

n
u(Ω) ≥

11



Maxmin(u;n), and the conclusion follows by comparing these inequalities
to those in (4).
Statement ii) We assume u ∈ M+(Ω) without loss of generality. The conti-
nuity and monotonicity of u imply: if S, T are two disjoints shares such that
u(S) > u(T ), we can trim part of S and add it to T to get two disjoint shares
with equal utility in between u(S) and u(T ). Expanding this argument, if
S1, · · · , Sk and T are disjoint shares such that

u(S1) = u(S2) = · · · = u(Sk) > u(T )

we can simultaneously trim S1, · · · , Sk keeping them of equal utility and add
the trimming to T , so that the resulting k + 1 shares are all equally good
and their common utility is between the two utilities above. Iterating this
process, we see that if Π = (Si)

n
i=1 ∈ Pn(Ω) is such that max1≤i≤n u(Si) >

min1≤i≤n u(Sj), we can construct an equi-partition Πe ∈ EPn(Ω; u) such that

max
1≤i≤n

u(Si) > u(Πe) > min
1≤j≤n

u(Sj)

Now fix ε > 0, arbitrarily small, pick Π = (Si)
n
i=1 ∈ Pn(Ω) such that

min1≤j≤n u(Sj) ≥ Maxmin(u;n) − ε, and assume that Π is not an equi-
partition. By the argument above we can find Πe ∈ EPn(Ω; u) such that
u(Πe) > min1≤j≤n u(Sj), therefore Π

e too is an ε-approximation ofMaxmin(u;n),
and the right-hand inequality in (3) follows. The proof of the left-hand inequality
is similar. �

In the general domain D(Ω), the partitions achieving the Maxmin and
minMax utilities are not necessarily equi-partitions. In the microeconomic
example of Section 1 we divide ω = 10 units of a single commodity between
two agents. Ann has single-peaked preferences and her minMax is achieved
by the all-or-nothing partition {∅,Ω}; Bob has single-dipped preferences and
the same partition delivers his Maxmin; and {∅,Ω} is not an equipartition
for either utility.

Remark 2: In the interval model with a monotone utility u, it is easy to
check that any two n-equipartitions have the same utility and in turn this
implies minMax(u;n) = Maxmin(u;n) and this is the best Fair Guarantee.
The numerical example above can be viewed as an instance of the interval
model where the two agents are indifferent between [0, x] and [1 − x, 1] for
all x: so only the inequality (4) holds true in the general (non monotone)
interval model.
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3.4 Fair Guarantees

Definition 3 Fix the manna (Ω,B) and a subdomain D∗, D∗ ⊆ D(Ω). An
Fair Guarantee in D∗ is a mapping Γ : u → Γ(u;n) such that for any profile
(ui)

n
i=1 ∈ (D∗)n there exists Π = (Si)

n
i=1 ∈ Pn(Ω) such that ui(Si) ≥ Γ(ui;n)

for all i.

By looking in Section 1 at the u-unanimity profile we observed that
Maxmin is an upper bound of any Fair Guarantee (inequality (1)). We
also mentioned two subdomains where Maxmin itself is a (hence the opti-
mal) Fair Guarantee: the additive domain Add(Ω) and the subdomain of
the separable one S(Ω) where preferences are also convex. Finally we used
the Ann and Bob microeconomic example with a single commodity to show
that Maxmin is not a Fair Guarantee in D(Ω), even for n = 2 and a one
dimensional manna.

Before proving in the next Section that minMax(·;n) is a Fair Guarantee
in the whole domain D(Ω) we construct a microeconomic example with two
divisible items and two agents u1 and u2 where

minMax(ui; 2) = 0 < 1 = Maxmin(ui; 2) for i = 1, 2
and (minMax(u1), minMax(u2)) is weakly Pareto optimal

Thus for any Fair Guarantee Γ at least one of Γ(u1; 2) = 0 and Γ(u2; 2) = 0
must hold. In words, for some problems, no Fair Guarantee can reduce the
gap from minMax to Maxmin for both agents.6

We divide one unit of each item, ω = (1, 1) and write shares as z = (x, y).
Both utilities are symmetric in x, y: ui(x, y) = ui(y, x) so we it is enough to
define them for x ≤ y:

u1(z) = 0 if x ≤ 1
2
≤ y

u1(z) = 1− 2y if x ≤ y ≤ 1
2

u1(z) = 2x− 1 if 1
2
≤ x ≤ y

u2(z) = 0 if x ≤ y ≤ 1
2
or 1

2
≤ x ≤ y

u2(z) = 2y − 1 if 1
2
≤ y ≤ 1− x

u2(z) = 1− 2x if 1
2
≤ 1− x ≤ y

The range of both utilities is [0, 1]. Agent 1’s utility u1(z1) is null in the NW
and SE quadrant of the box [0, 1]2 with center at (1

2
, 1
2
); it is strictly positive

6Of course Divide and Choose implements the utility profile
(minMax(ui; 2),Maxmin(uj; 2)) so this gap can be closed for one agent.
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in the SW and NE quadrants except on the lines x = 1
2
and y = 1

2
. Agent 2’s

utility u2(z2) is symetrically null in the SW and NE quadrants, and strictly
positive in the NW and SE quadrants except on the same two lines. Therefore
for any division (1, 1) = z1 + z2 of the manna we have u1(z1) · u2(z2) = 0:
there is no feasible division s. t. ui(zi) > 0 for i = 1, 2.

The partition {(0, 0), (1, 1)} achievesMaxmin(u1) = 1 andminMax(u2) =
0; the partition {(0, 1), (1, 0)} achieves Maxmin(u2) = 1 andminMax(u1) =
0.

4 The Divide & Choosen rule

We start by a combinatorial observation. Let G be a bilateral graph between
the sets M of agents and R of shares: (m, r) ∈ G means agent m likes share

r. We say that the subset M̃ of agents are properly matched to the subset R̃
of shares if |M̃ | = |R̃|, agents in M̃ are each matched (one-to-one) to a share

they like in R̃, and no one outside M̃ likes any share in R̃.

Lemma 2. Assume |M | = |R|, each agent in M likes at least one object
in R and some agent i∗ likes all objects in R. Then there is a (non empty)

largest set M∗ of properly matchable agents containing i∗: if M̃ is properly
matched to R̃, then M̃ ⊆ M∗.

Proof. This is a simple consequence of the Gallai-Edmonds decomposi-
tion of a bipartite graph: see e.g. [22] Chap 3 (or Lemma 1 in [8]). If M can
be matched with R this is a proper match and the statement holds true. If M
and R cannot be matched, then we can uniquely partition M as (M+,M∗)
and R as (R+, R∗) such that:
1. |M+| > |R+|, the agents in M+ do not like any object in R∗, and they
compete for the over-demanded objects in R+: every subset of R+ is liked
by a strictly larger subset of agents in M+;
2. |M∗| < |R∗| and the agents in M∗ can be matched with some subset of
R∗.

By the general Gallai-Edmonds result, M+ and R∗ are non empty. Here
M∗ is non empty as well because it contains the special agent i∗. Every
match of M∗ to a subset of R∗ is proper. Finally suppose M̃ is properly
matched to R̃ and M̂ = M̃ ∩M+ is non empty. Then M̂ is matched to some
subset R̂ of R+ but R̂ is liked by more agents in M+ than there are in M̂ ,
therefore the match is not proper: contradiction. So M̃ does not intersect

14



M+ as was to be proved.�

Definition 4: the D&C n rule.
Fix the manna (Ω,B) and the ordered set of agents N = {1, · · · , n}, each
with a utility in D(Ω).
Step 1. Agent 1 proposes a partition Π1 ∈ Pn(Ω); all other agents report
which shares in Π1 they like (at least one). In the resulting bipartite graph
between N and the shares in Π1, where agent 1 likes all the shares, we use
Lemma 2 to match properly the largest possible set of agents N1 (it contains
agent 1) with some set of shares R; if N1 = N we are done, otherwise we
go to
Step 2. Repeat with the remaining manna Ω2 and agents in N�N1. Ask the
first agent in the exogenous ordering to propose a partition Π2 ∈ Pn−|N1|(Ω

2),
while others report which of these new shares they like. And so on.

At least one agent, the Divider, is served in each step, thus the algorithm
just described takes at most n− 1 steps.

There is some flexibility in the Definition of the rule: although the set
of agents matched in each step is unambiguous, we have typically several
choices for the set R of shares to assign in each step, and multiple ways to
assign these to the agents. We match as many agents as possible so as to
minimize the number of queries, hence of information disclosure.

Our first main result is that minMax is a Fair Guarantee, implemented
by the D&Cn rule in the full domain D(Ω).

Theorem 1

Fix the manna (Ω,B) and n.
i) In the D&C n rule, an agent with utility u ∈ D(Ω) guarantees the minMax(u;n)
utility level by 1) when called to divide, proposing an equi-partition Πe ∈
EPm(S) of the remaining share S of manna among the m remaining agents,
and 2) when reporting shares he likes, accepting all shares, and only those,
not worse than minMax(u;n) (the minMax level in the initial problem).
ii) Moreover the first Divider (and no one else) can guarantee her Maxmin
utility. Other agents cannot guarantee more than their minMax utility.

Proof. Statement i). Consider agent u using the strategy in the state-
ment. At a step where he must report which shares he likes among those
offered at that step, he can for sure find one worth at least minMax(u;n): all
shares previously assigned are worth to him strictly less than minMax(u;n),
and together with the freshly cut shares they form a partition in Pn(Ω); in
any partition at least one share is worth minMax(u;n) or more.
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At a step where our agent is called to cut, he proposes to the remaining
agents an m-equi-partition Πe ∈ EPm(S) of the remaining manna S. To
check the inequality u(Πe) ≥ minMax(u;n) note that Πe together with the
previously assigned shares is a partition of Ω in which the old shares are
worth strictly less than minMax(u;n).7

Statement ii). This is clear for the first Divider. Fix now an agent i with
utility u and check that if he is not the first Divider, for certain moves of
the other agents, agent u gets exactly his minMax utility. Pick a partition
Π ∈ Pn(Ω) achieving minMax(u;n) (the existence assumption is without
loss). Suppose that the first Divider, who is not agent i, offers Π, and all
agents other than i (but including the Divider) find all shares acceptable:
then a full match is feasible (i must accept at least one share) so his share
cannot be worth more than minMax(u;n). �

5 Bid and Choose and Moving Knives for

good or bad manna

We now assume that the manna is unanimously good, u ∈ M+(Ω), or unan-
imously bad, u ∈ M−(Ω). Because u(∅) = 0, for all S we have u(S) ≥ 0
in the former case and u(S) ≤ 0 in the latter. Recall that in these two do-
mains, the minMax (resp. Maxmin) utility is the smallest (resp. largest)
equi-partition utility: property (3) in Proposition 1.

We check first that the profile of Maxmin utility levels still may not
be feasible, even in the simple microeconomic model (corresponding to the
separable domain defined in Subsection 3.1). The manna ω = (1, 1), one unit
each of two divisible goods, is shared by two agents and a share is written
z = (x, y). The first one has Leontief preferences u1(z) = min{x, y} so his
worst case partition is Π = {(1, 0), (0, 1)} and his best one is the equal split
partition Π′ = {1

2
ω, 1

2
ω}: minMax(u1; 2) = 0 < 1

2
= Maxmin(u1; 2). Agent

2 has anti-Leontief preferences: u2(z) = max{x, y}. For her the equal split
partition Π′ is the worst and the best one is Π: minMax(u2; 2) =

1
2
< 1 =

Maxmin(u2; 2). Thus the profile of Maxmin utilities (1
2
, 1) is not feasible,

and D&C2 guarantees only the minMax utilities (0, 1
2
).

7After Step 1 an agent can secure his Maxmin utility for the smaller manna S among
m agents, but this may be below the Maxmin utility in the initial problem.
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We show that theminMax guarantee is always improved, at least weakly,
by the large family of Bid and Choose (B&Cn) rules, inspired by the familiar
Moving Knives (MKn) rules ([18]).

5.1 MKκ
n and B&Cθ

n rules

A moving knife through the manna (Ω,B, | · |) is a path κ : [0, 1] ∋ t →
K(t) ∈ B from K(0) = ∅ to K(1) = Ω, continuous for the pseudo-metric δ
on B and strictly inclusion increasing:

0 ≤ t < t′ ≤ 1 =⇒ K(t) ⊂ K(t′) and |K(t′)�K(t)| > 0

The moving knife κ arranges shares of increasing value to all participants
along the specific path of the knife. An example is K(t) = B(t) ∩ Ω, where
t → B(t) is a path of balls with a fixed center and radius growing from 0 to
1, so that B(1) contains Ω. Moving knifes can take many other shapes, for
instance hyperplanes.

Our Bid and Choose rules offer more choices to the agents, with the help
of a benchmark measure θ of the shares, chosen by the rule designer: θ
is a positive σ-additive measure on (Ω,B), normalised to θ(Ω) = 1. It is
absolutely continuous w.r.t. the Lebesgue measure | · | and vice versa: the
density of θ w.r.t. | · | is strictly positive. In particular θ is strictly inclusion
increasing:

∀S, T ∈ B : S ⊂ T and |T�S| > 0 ⇒ θ(S) < θ(T )

In applications θ can evaluate for instance the market value, physical size, or
weight of a share.

Fixing a moving knife κ and a measure θ, we define in parallel the Moving
Knife (MKκ

n) and the Bid and Choose (B&Cθ
n) rules. In both cases a clock t

runs from t = 0 to t = 1.

Definition 5 the MK κ
n and B&C θ

n rules with increasing utilities
Step 1. The first agent i1 to stop the clock, at t1, gets the share K(t1) in
MK κ

n, or in B&C θ
n chooses any share in Ω s.t. θ(S) = t1, say Si1, and leaves;

Step k: Whoever stops the clock first at tk gets the share K(tk)�K(tk−1) in
MK κ

n, or in B&C θ
n chooses any share in Ω�∪k−1

1 Siℓ s.t. θ(S) = tk − tk−1,
say Sik , and leaves;
In Step n− 1 the single remaining agent who did not stop the clock takes the
remaining share Ω�K(tn−1) or Ω�∪n−1

1 Siℓ.
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Definition 5∗ with decreasing utilities
In each step all agents must choose a time to “drop”, and the last agent i1 who
drops, at t1, gets K(t1) in MK κ

n, or in B&C θ
n chooses Si1 s.t. θ(Si1) = t1.

The other steps are similarly adjusted.

Breaking ties between agents stopping the clock (or dropping) at the
same time is the only indeterminacy in these rules, much less severe than in
D&Cn, where we serve at each step an unambiguous set of agents, but there
are typically several ways to match them properly.

Up to tie-breaking, B&Cθ
n and MKκ

n are anonymous (do not discriminates
between agents) but not neutral (do discriminate between shares), while
D&Cn is neutral but not anonymous.

The range of the B&Cθ
n rule is the entire set Pm(Ω) of partitions of the

manna: this stands in sharp contrast with MKκ
n in which the set of feasible

shares for an agent (resp. feasible partitions) is of dimension 2 (resp. n− 1)
. To check the former claim we fix Π = (Si)

n
i=1 and assume first |Si| > 0 for

all i. Consider n agents deciding (cooperatively) to achieve Π. By the strict
monotonicity of θ the sequence ti = θ(∪i

j=1Sj) increases strictly therefore
they can stop the clock (or drop) at these successive times and choose the
corresponding shares in Π. If there are shares of measure zero they can all
be distributed at time 0.

On the other hand in B&Cθ
n all but one agent must pick a share under

constraints, thus revealing more information than in MKκ
n. Loosely speaking,

B&Cθ
n is informationally comparable to D&Cn.

Remark 3. We can also implement the same Guarantees described in
the next Subsection by alternative static versions of MK κ

n and B&C θ
n where

agents bid all at once for potential stopping times; we do not discuss these
rules for the sake of brevity.

5.2 B&Cθ and MKκ Guarantees

We fix an increasing utility u ∈ M+(Ω). The results are identical, and
identically phrased, for a bad manna u ∈ M−(Ω). See also Remark 4 at the
end of this Subsection.

Define the triangle T = {(t1, t2)|0 ≤ t1 ≤ t2 ≤ 1} in R2
+ and the set Υ(n)

of increasing sequences τ = (tk)0≤k≤n in [0, 1] s.t.

t0 = 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ 1 = tn
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For a moving knife κ, utilities of the shares in MKκ
n are described by the

function uκ on T :

uκ(t1, t2) = u(K(t2)�K(t1)) for all (t1, t2) ∈ T

For a measure θ, the corresponding definition in B&Cθ is the indirect utility
uθ:

uθ(t1, t2) = min
T :θ(T )=t1

max
S:S∩T=∅;θ(S)=t2−t1

u(S) for all (t1, t2) ∈ T (5)

Both uκ and uθ decrease (weakly) in t1 and increase (weakly) in t2.
We show below that the Guarantees Γk and Γθ implemented by MKκ

n and
B&Cθ

n respectively are computed as follows:

Γα(u;n) = max
τ∈Υ(n)

min
0≤k≤n−1

uα(tk; tk+1) where α is κ or θ (6)

For instance in MKκ
2 with two agents we write τκ for the (not necessarily

unique) position of the knife making our agent indifferent between the share
K(τκ) and its complement:

Γκ(u; 2) = max
0≤t1≤1

min{u(K(t1)), u(Ω�K(t1)) = u(K(τκ)) = u(Ω�K(τκ)

In B&Cθ
2 the bid τ θ makes the best share of size τ θ as good as the worst

share of size 1− τ θ:

Γθ(u; 2) = max
0≤t1≤1

min{ max
θ(S)=t1

u(S), min
θ(S)=t1

u(Ω�S)} = max
θ(S)=τθ

u(S) = min
θ(S)=τθ

u(Ω�S)

(7)
Lemma 4

i) The utility uκ and the indirect utility uθ are continuous. Both the minimum
and maximum in (5) are achieved.
ii) The maximum of problem (6) (for both rules) is achieved at some τ ∈ Υ(n)
where the sequence tk increases in k, all the uα(tk; tk+1) are equal, and this
common utility is the optimal value of (6).

Proof in Appendix 7.2.

Theorem 2

Fix the manna (Ω,B), the number of agents n, and a utility u ∈ M+(Ω).
i) With the MK κ

n rule, an agent guarantees the utility Γκ(u;n) by committing
to stop the knife at tkκ if exactly k − 1 other agents have been served before;
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ii) With the B&C θ
n rule, she guarantees Γθ(u;n) by stopping the clock at tkθ

if exactly k − 1 other agents have been served before; and choosing then the
best available share of size tk − tk−1.
iii) minMax(u;n) ≤ Γα(u;n) ≤ Maxmin(u;n) where α is κ or θ.

Proof.
Statement i) and iii) for MK κ

n. Recall the equi-partition Π = (K(tkκ)�K(tk−1
κ ))n1

has u(Π) = Γκ(u;n). Thus (3) in Proposition 1 implies the inequalities iii).
Next if the knife has been stopped k−1 times before our agent is served, the
last stop occured at or before tk−1

κ therefore if she does stop the knife at tkκ
(and wins the possible tie break) her share is at least K(tkκ)�K(tk−1

κ ). If she
never gets to stop the knife, the last stop is at or before tn−1

κ and she gets at
least Ω�K(tn−1

κ ).

Statement ii). If she is the first to stop the clock (perhaps also winning the
tie break) at step k, in step k − 1 the clock stopped at tk−1 ≤ tk−1

θ and the
share T already distributed at that time has θ(T ) = tk−1: therefore she can
choose a share with utility uθ(tk−1; tkθ) ≥ uθ(tk−1

θ ; tkθ) = Γθ(u;n). If she is the
last to be served, having never stopped the clock (or lost some tie breaks)
the share assigned to all other agents has θ(T ) = tn−1 ≤ tn−1

θ therefore her
share is worth uθ(tn−1; 1) ≥ uθ(tn−1

θ ; 1) = Γθ(u;n).

Statement iii) for B&C θ
n.

Right hand inequality. It is enough to construct a partition Π = (Sk)
n
1 in

which the utility of every share Sk, 0 ≤ k ≤ n − 1 is at least uθ(tk−1
θ , tkθ),

implying mink u(Sk) ≥ Γθ(u;n). We proceed by induction on the steps of
B&Cθ

n. First S1 maximizes u(S) s.t. θ(S) = t1θ so u(S1) = uθ(0; t1θ) = Γθ(u;n)
and θ(S1) = t1θ. Assume the sets Sℓ are constructed for 1 ≤ ℓ ≤ k, mutually
disjoint, s.t. θ(Sℓ) = tℓθ− tℓ−1

θ and u(Sℓ) ≥ uθ(tℓθ, t
ℓ−1
θ ): then the set T = ∪k

1Sℓ

is of size tkθ and we pick Sk+1 maximizing u(S) s.t. S ∩ T = ∅ and θ(S) =
tk+1
θ − tkθ . By definition (5) we have u(Sk) ≥ uθ(tkθ ; t

k+1
θ ) and the induction

proceeds. Note that in fact mink u(Sk) = Γθ(u;n).

Left hand inequality. We need now construct a partition Π = (Rk)
n
1 s. t.

u(Rk) ≤ uθ(tk−1
θ ; tkθ) for 1 ≤ k ≤ n. We do this by a decreasing induction in n.

In (the first) step n of the induction we define the 2-partition Πn = (Tn−1, Rn)
of Ω where Tn−1 is any solution of the program minT :θ(T )=tn−1

θ

u(Ω�T ), and

Rn = Ω�Tn−1. Thus u(Rn) = uθ(tn−1
θ ; 1) and θ(Tn−1) = tn−1

θ .
Assume that in step k we constructed the (n − k + 2)-partition Πk =

(Tk−1, Rk, Rk+1, · · · , Rn) s.t. θ(Tk−1) = tk−1
θ and u(Rℓ) ≤ uθ(tℓ−1

θ ; tℓθ) for
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k ≤ ℓ ≤ n. Pick T̃ a solution of

min
T :θ(T )=tk−2

θ

max
S:S∩T=∅;θ(S)=tk−1

θ
−tk−2

θ

u(S) = uθ(tk−2
θ ; tk−1

θ )

As θ(T̃ ∩Tk−1) ≤ tk−2
θ and θ(Tk−1) = tk−1

θ we can choose Tk−2 s.t. T̃ ∩Tk−1 ⊆
Tk−2 ⊆ Tk−1 and θ(Tk−2) = tk−2

θ . Then we set Rk−1 = Tk−1�Tk−2 so that

u(Rk−1) ≤ uθ(tk−2
θ ; tk−1

θ ) follows from Rk−1 ∩ T̃ = ∅ and the definition of

T̃ . This completes the induction step. We note finally that each set Rk thus
constructed is of θ-size tkθ − tk−1

θ , and that maxk u(Sk) = Γθ(u;n). �

It is easy to check that no agent can secure more utility than Γκ
n in MKκ

n

or Γθ
n in B&Cθ

n.

Remark 4. The minMax Guarantee and Maxmin upper bound for u ∈
Mε(Ω) and −u ∈ M−ε(Ω), where ε = ±, are related: minMax(−u;n) =
−Maxmin(u;n). With two agents the Guarantees Γκ(u; 2) and Γθ(u; 2) are
similarly antisymmetric:

Γα(−u; 2) = −Γα(u; 2) where α is κ or θ (8)

This is clear for Γκ and we check it for Γθ by means of the change of variable
S → S ′ = Ω�S:

Γθ(−u; 2) = − min
0≤t1≤1

max{ min
θ(S)=t1

u(S), max
θ(S)=t1

u(Ω�S)} =

− min
0≤t1≤1

max{ min
θ(S′)=1−t1

u(Ω�S ′), max
θ(S′)=1−t1

u(S ′)}

= − min
0≤t′≤1

max{ max
θ(S′)=t′

u(S ′), min
θ(S′)=t′

u(Ω�S ′)}

and the claim follows because if two continuous functions t → f(t) and
t → g(t) intersect in [0, 1] and one increases while the other decreases, then
min0≤t≤1 max{f(t), g(t)} = max0≤t≤1min{f(t), g(t}.

The identity (8) generalises to n ≥ 3 for the MK κ Guarantee, but not for
the B&C θ one.

5.3 Microeconomic fair division

We must divide a good manna ω ∈ RK
+ in n shares zi ∈ RK

+ . Utilities
u ∈ M+(ω) are continuous and weakly increasing on [0, ω].
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A Moving Knife is a continuous increasing path t → K(t) from 0 to ω:
a natural choice is K(t) = tω, 0 ≤ t ≤ 1: the corresponding Guarantee
Γκ(u;n) = u( 1

n
ω) is the Equal Split utility Γes(u;n) = u( 1

n
ω). A positive,

additive measure θ defining B&Cθ is a “price” θ(z) = p · z, p ∈ RK
+�{0}, we

write the corresponding Guarantee as Γp.

Recall from Section 1 that if an agent’s preferences are convex her Equal
Split utility equals her Maxmin utility, the upper bound on all Fair Guar-
antees ((1)), in particular weakly larger than the B&Cp guarantee for any p.
The converse inequality holds for “concave preferences”.

Lemma 5

i) If the upper contours of the utility u ∈ M+(ω) are convex, then Γp(u;n) ≤
u( 1

n
ω) = Maxmin(u;n).

ii) If the lower contours of the utility u ∈ M+(ω) are convex, then minMax(u;n) =
u( 1

n
ω) ≤ Γp(u;n).

The equality in statement i) was proven in Section 1. A symmetrical
argument gives statement ii). Pick a hyperplane H supporting the lower
contour of u at 1

n
ω; then the upper contour of u at 1

n
ω contains one closed

half-space cut by H , and every division of the manna includes at least one
share in that half-space, implying u( 1

n
ω) ≤ minMax(u;n), and the reverse

inequality is clear.

We turn to a handful of numerical examples where K = 2, ω = (1, 1),
and p · z = 1

2
(x + y). Shares are z = (x, y), utilities are 1-homogenous and

normalised so that u(ω) = 10. We compute our three Guarantees: Bid and
Choose Γp, Equal Split, and minMax, and compare them to the Maxmin
upper bound.

The first three utilities (Leontief, Cobb Douglas and CES) define con-
vex preferences, the last two define “concave preferences” (represented by
quadratic and “anti-Leontief” utilities).

Our first table assumes two agents, n = 2, and illustrates Lemma 5. An
agent with convex (resp. concave) preferences gets a better Guarantee under
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Equal Split (resp. Bid and Choose):

u(x, y) minMax(u; 2) Γp(u; 2) u(1
2
ω) Maxmin(u; 2)

10min{x, y} 0 3.3 5 5
10
√
x · y 0 4.1 5 5

5
2
(
√
x+

√
y)2 2.5 4.4 5 5

5(x+ y) 5 5 5 5

5
√
2(x2 + y2) 5 5.9 5 7.1

10max{x, y} 5 6.7 5 10

The equal split partition delivers the Maxmin utility for the first four
preferences, and the minMax utilities for the last three. The equi-partition
Π = {(1, 0), (0, 1)} gives similarly the minMax utilities of the first four, and
the Maxmin ones for the last three.

To compute Γp(u; 2) we know from (7) that the optimal bid t1 (denoted
t for simplicity) solves

max
1

2
(x+y)≤t

u(x, y) = min
1

2
(x+y)≤t

u(1− x, 1− y) = min
1

2
(x+y)≥1−t

u(x, y)

This equality implies 0 ≤ t ≤ 1
2
. If u represents convex preferences symmetric

in the two goods, u(x, y) is maximal under 1
2
(x + y) ≤ t at x = y = t, and

minimal under x + y ≥ 2(1 − t) at x = 1, y = 1 − 2t. So we must solve
u(t, t) = u(1, 1− 2t): see Figure 2.

If u represents concave symmetric preferences its maximum under 1
2
(x+

y) ≤ t is at x = 0, y = 2t, and its minimum under x + y ≥ 2(1 − t) at
x = y = 1− t, so we solve u(0, 2t) = u(1− t, 1− t): see Figure 3.

We compute finally the same Guarantees with three agents:

u(x, y) minMax(u; 3) Γp(u; 3) u(1
3
ω) Maxmin(u; 3)

10min{x, y} 0 2 3.3 3.3
10
√
x · y 0 2.4 3.3 3.3

5
2
(
√
x+

√
y)2 2 2.5 3.3 3.3

5(x+ y) 3.3 3.3 3.3 3.3

5
√
2(x2 + y2) 3.3 4.1 3.3 4.1

10max{x, y} 3.3 5 3.3 5

The minMax equi-partition for u = 5
2
(
√
x+

√
y)2 and the Maxmin equi-

partition for u′ = 5
√
2(x2 + y2) have the same form Π = {(x, 0), (0, x), (1−
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x, 1 − x)}: in the former case we find x = 4
5
and minMax(u; 3) = 2, in the

latter we get x = 2 −
√
2 and Maxmin(u′; 3) = 10(

√
2 − 1). Lemma 5 and

the partition Π′ = {(1, 0), (0, 1
2
), (0, 1

2
)} fill the remaining values of minMax

and Maxmin.
To compute Γp(u; 3) we know by Lemma 4 that the three terms in (6)

are equal. They are
up(0, t1) = max 1

2
(x+y)≤t1 u(x, y)

up(t1, t2) = min 1

2
(x1+y1)≤t1 max 1

2
(x+y)≤t2−t1 and (x1+x,y1+y)≤(1,1) u(x, y)

up(t2, 1) = min 1

2
(x2+y2)≤t2 u(1− x2, 1− y2)

Clearly t1 ≤ 1
3
(as t2 − t1 < 1

3
< t1 and 1 − t2 < 1

3
< t1 are both

impossible). Therefore up(0, t1) = up(t1, t2) is achieved by t2 = 2t1 (the
constraint (x1 + x, y1 + y) ≤ (1, 1) does not bind). Writing t = t1 = t2 − t1

it remains to solve

max
1

2
(x+y)≤t

u(x, y) = min
1

2
(x2+y2)≤2t

u(1− x2, 1− y2) = min
1

2
(x+y)≥1−2t

u(x, y)

When u represents convex preferences symmetric in the two goods, the
minimum on the right-hand side is achieved by (x, y) = (1−4t, 1) so we solve
u(t, t) = u(1− 4t, 1). See Figure 4.

If u represents concave symmetric preferences, the minimum on the right-
hand side is achieved by (x, y) = (1 − 2t, 1 − 2t) so we solve u(2t, 0) =
u(1− 2t, 1− 2t). See Figure 5.

6 Concluding comments

Comparing B&Cn versus D&Cn rules The exogenous ordering of the
agents greatly affects the outcome of D&Cn, whereas B&Cn treats the agents
symmetrically. On the other hand the choice of the benchmark measure in
B&Cn is exogenous, which allows much, perhaps too much flexibility to the
designer.

In D&Cn the dividing agent may have many different strategies guaran-
teeing her minMax utility. By contrast in B&Cn the solution to programs
(7) and (6) is often unique. Multiple choices and the resulting indeterminacy
of the outcome may be appealing for the sake of privacy preservation, less so
from the implementation viewpoint.
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Two challenging open questions 1). Fix the manna (Ω,B) as in Theo-
rem 1, and the set [n] of agents, each with a utility in D(Ω). As explained
in Remark 1, Subsection 3.2, Stromquist ([35]) and Su ([36]) showed that an
envy-free partition of Ω exists if all utilities are non negative for all shares.
Is this still true if we remove the sign assumption on utilities?

2) If the utilities vary in a domain U(⊗) where the Maxmin utility is not
feasible, we would like to discover the family of undominated Fair Guarantees
u → Γ(u;n). For instance in the microeconomic domain M+(ω) of Subsec-
tion 5.3, the Equal Split Guarantee is clearly undominated. We conjecture
that in the domains M±(Ω) the B&C Guarantees Γθ (Subsection 5.2) are
undominated as well.

7 Appendices

7.1 Proof of Lemma 1: equi-partition

Recall that we have one fixed agent who wants to split the space into n pieces
he regards as all equally valuable. We may assume the value is normalized
so that the empty set has value 0 (not that it matters) and by fixing a set of
knife cuts, we can think of the goods as being the unit interval [0, 1). Think
of the n pieces as n agents who all have the same preference function as the
fixed agent.

Take this unit interval and embed it in a curved way in a high dimensional
Euclidean space RM in such a way that every codimension 1 hyperplane
meets the interval in only finitely many points. The standard way to do this
is by mapping the point t ∈ [0, 1) to the point x(t) = (t, t2, t3, . . . , tM). Any
codimension 1 hyperplane is defined by a vector equation a · x = b for some
vector a = (a1, a2, . . . , aM) and some constant b. But then the equation that
the point x(t) is on this hyperplane is the polynomial aM tM+· · ·+a2t

2+a1t−
b = 0 which has at most M solutions. Thus any codimension 1 hyperplane
meets at most M points.

Now we define the configuration space

Confn(R
M) =

(
n∏

k=1

RM

)
\{(x1, x2, . . . , xn) ∈ (RM)n : xi = xj for some i 6= j}.
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In words the configuration space is just the n-tuples of distinct points
chosen from RM . For any point (x1, . . . , xn) in this configuration space we
can assign a division of the interval [0, 1). We simply assign to the k-th agent
all points t for which x(t) is closer to his point xk than to any other agents.
There is a slight ambiguity here for points that are equidistant from two
agents, but the set of points equidistant from xj and xk is the codimension
1 hyperplane that bisects the segment [xj , xk] and by our construction these
hyperplanes contain only finitely many points. Thus the ambiguity is a finite
set (in particular it has measure zero), so we may ignore it. Note that
although this description is reasonably pretentious, the actual divisions we
get are formed by cutting along a large number of hyperplanes. Thus each
agents share will be a disjoint union of finitely many intervals.

For each such division, we can assign a value in Rn where the k-th coor-
dinate is the utility of the share given to the k-th agent. We want to show
that there is some point (x1, . . . , xn) in the configuration space for which this
utility lies on the line (a, a, a, . . . , a), that is, for which every agent’s share
has the same utility.

Assume this is not the case. Then we can subtract the overall mean from
the utilities to get a point in

Rn−1 = {(a1, a2, . . . , an) : a1 + a2 + · · ·+ an = 0}
and then rescale to get an element of

Sn−2 = {(a1, a2, . . . , an) : a1 + a2 + · · ·+ an = 0 and a21 + a22 + · · ·+ a2n = 1}.

Thus we have a map

f : Confn(R
M) → Sn−2.

Notice that there is a natural action of the symmetric group Sn on the
configuration space by permuting the agents and on the sphere by permuting
the coordinates and the map f is equivariant under this action. We will show
that no such map can exist, in fact we will show that there cannot be such a
map which is invariant under the cyclic group G = Z/nZ acting by cyclically
permuting the agents. From here we use the tools of algebraic topology, as
described in ([23]).

If there were such a map, then taking the quotient would give a map
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g = f : Confn(R
M)/G → Sn−2/G.

The action of the cyclic group on Sn−2 is a free action if n is an odd
prime and the quotient is a Lens space, but not in general. In the general
the quotient must be interpreted as an orbifold.

Since both quotients have fundamental group G, there are classifying
maps from each to the classifying space BG. This classifying space can be
thought of as the limit of the quotient Confn(R

M)/G as M goes the infinity,
and hence we may choose M large enough that the homologies agree as far
as we desire. Since the universal cover of Sn−2/G is the (n − 2)-sphere, we
can think of the classifying space BG as being built from this (n− 2)-sphere
by adding cells of dimension (n − 1) and higher and the classifying map
h : Sn−2/G → BG as being an inclusion. In particular, this means that

h∗ : Hk(S
n−2/G;Z) → Hk(BG;Z)

is an isomorphism for k < n − 2 and a surjection for k = n − 2. For n
odd, the action of G is by orientation-preserving maps and therefore Sn−2/G
has a fundamental class and

h∗ : Hn−2(S
n−2/G;Z) ∼= Z → Hn−2(BG;Z) = Z/nZ

is the usual projection. If n is even, then the action is by orientation-
reversing maps and both Hn−2(S

n−2/G;Z) and Hn−2(BG;Z) vanish. In ei-
ther case by the universal coefficent theorem we find that

h∗ : Hk(BG,Z/nZ) → Hk(Sn−2/G;Z/nZ)

is an isomorphism for 0 ≤ k ≤ n− 2.
Recall that the cohomology ring

H∗(BZ/nZ;Z/nZ) = Z/nZ[α, β]/(β2 = kα)

is generated by two elements β of dimension 1 and α of dimension 2 with
the relation that if n is odd then β2 = 0 (so k = 0 in the formula above)
and if n = 2k is even, then β2 = kα. Since the map Sn−2/G → BZ/nZ
is an isomorphism on the fundamental group and hence on first homology,
it follows from the universal coefficients theorem that h∗ is an isomorphism
on both H1 (which comes from Hom(H1)) and on H2 (which comes from
Ext(H1)). Hence H∗(Sn−2/G;Z/nZ) is generated by the images of α and
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β (which again we will denote by the same symbols), with just the added
restriction that all product of dimension over n− 2 vanish.

Now we have a map on cohomology rings

g∗ : H∗(Sn−2/G,Z/nZ) → H∗(Confn(R
M)/G,Z/nZ).

This map is the identity map on the fundamental group, hence on H1,
and hence g∗ is the identity on H1and H2. Thus the elements α and β must
map to the analogous elements for the configuration space. But this cannot
happen since the products of α and β of dimension more than n − 2 vanish
on the left hand side, but (for M large enough) not on the right hand side.
Thus we have a contradiction.

7.2 Proof of Lemma 4

1). First statement. Recall that we can replace in definition (5) the equalities
like θ(T ) = t1 with inequalities θ(T ) ≤ t1. We check first that the correspon-
dence t → {S ∈ B|θ(S) ≤ t} is continuous. Upper hemi continuity follows by
the continuity of θ. For lower hemi continuity pick a sequence tn converging
to t and S ∈ B s.t. θ(S) ≤ t. If tn has a decreasing subsequence, we set
Sn = S so that θ(Sn) ≤ tn and Sn converges to S. If tn has an increasing
subsequence we construct an inclusion increasing sequence Sm converging to
S and s.t. |Sm| < |S| for all m: because θ increases strictly, so does the
sequence θ(Sm) converging to θ(S), therefore we can pick subsequences Sp of
Sm and tp of tn s.t. θ(Sp) ≤ tp, as desired.

Next we apply the Maximum Theorem twice. The first one to show
that the function (T, t1, t2) → C(T, t1, t2) = max{u(S)|S ⊂ Ω�T ; θ(T ∪
S) ≤ t1 + t2} is continuous because the correspondence (T, t1, t2) → {S|S ⊂
Ω�T ; θ(T ∪ S) ≤ t1 + t2} is continuous. The second one to deduce that the
function minT :θ(T )≤t1 C(T, t1, t2) is continuous.

2). Second statement. For simplicity we assume n = 3, the general proof
is entirely similar. Fixing u and t1 there is some t2 such that uθ(t1; t2) =
uθ(t2; 1). This is because of the monotonicity properties of uθ and of the
inequalities uθ(t1; t1) = 0 ≤ uθ(t1; 1) and uθ(t1; 1) ≥ 0 = uθ(1; 1). This
common value is unique (though t2 may not be) and defines a function g(t1) =
uθ(t1; t2) = uθ(t2; 1). It is easy to check from the continuity and monotonicity
properties of uθ that g is weakly decreasing and continuous. Then we find in
the same way t1 s.t. g(t1) = uθ(0; t1).
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Check finally that if τ ∗ ∈ Υ(n) is such that all terms uθ(tk∗; t
k+1
∗ ), 0 ≤

k ≤ n − 1, equal a common value λ, then τ ∗ solves program (6). If it does
not there is a τ such that uθ(tk; tl+1) > λ for 0 ≤ k ≤ n − 1. Applying this
inequality at k = 0 gives t1 > t1∗; next at k = 1 we get uθ(t1, t2) > uθ(t1∗, t

2
∗)

implying t2 > t2∗; and so on until we reach a contradiction with the fact that
both τ and τ ∗ are in Υ(n).

Finally, the optimal sequence tk increases in k, strictly if u is not every-
where zero because u(t, t) = 0 for all t.
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