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Abstract

We investigate stochasticity in choice behavior across diverse decisions.

Each decision is modeled as a menu of actions with associated outcomes, and

a stochastic choice rule assigns probabilities to actions based on the outcome

profile. We characterize rules whose predictions are not affected by whether or

not additional, irrelevant decisions are included in the model. Our main result

is that such rules form the parametric family of mixed-logit rules.

1 Introduction

Consider an analyst who observes individuals choosing among different actions, each

yielding a given payoff known to the analyst. Although people prefer higher payoffs, in
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reality they do not always choose the action that yields the highest payoff, for various

reasons, including cognitive limitations, errors in the decision-making process, and

random shocks to the perceived payoff. The analyst would like to develop a prediction

model to estimate out-of-sample choice probabilities, for example following a policy

change or market restructuring. In this paper we use an axiomatic approach to restrict

the analyst’s set of models, abstracting away from the physical reasons for randomness

in choice. We show that mixed logit, a commonly used model (also known as random

coefficients logit), is unique in satisfying three simple axioms.

We model a single decision instance as a menu consisting of a finite set of actions,

each associated with an outcome. For simplicity, we primarily focus on monetary

outcomes, represented by real numbers. The actions are treated as mere labels, car-

rying no intrinsic meaning for the decision maker. This modeling approach abstracts

from the structure of the alternatives and focuses instead on the distribution of pay-

offs. It parallels the random utility model literature, where utilities are primitives.

Alternatively, one can view menus as one-player normal form games.

A stochastic choice rule assigns to each menu a probability distribution over the

set of actions, which we interpret as the predicted choice probabilities. The collection

of stochastic choice rules is a rich, non-parametric family that gives rise to the problem

of model selection. We restrict this family by considering three axioms: monotonicity,

continuity, and independence of irrelevant decisions (IID).

Monotonicity requires that an action that yields a higher payoff is taken with

higher probability. This axiom places an ordinal restriction on the choice probabilities

within a menu but places no restrictions across menus. Continuity is the technical

assumption that a small change in outcomes leads to a small change in the model

predictions.

Our main axiom is independence of irrelevant decisions (IID). It is a condition

imposed on additively separable menus, or, as we shall call them, product menus.

Such menus represent situations where multiple choices are made together, and the

payoff from one choice does not affect the payoff from another. Suppose that an

individual has to choose one of the two actions A1 “ ta, bu, and also one of the two

actions A2 “ ts, tu. We can think of these two choices as a combined choice in a

menu with action set A “ tpa, sq, pa, tq, pb, sq, pb, tqu, and an outcome function that

assigns a monetary payoff to each action. A simple case is the one in which payoffs

are additively separable, i.e., the outcome function is a sum of two functions, one that
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depends on the first coordinate, and another that depends on the second. In this case

we say that the menu is a product menu.

For example, suppose that ta, bu are two brands of soap, and ts, tu are two brands

of milk. Then it may be natural to model the joint problem as a separable one.

However, if ta, bu are two choices for a suit’s jacket and ts, tu are two choices for the

suit’s pants, then the appropriate model will not be a product menu, since there are

strong complementarities.

Consider an analyst employed by a soap company who wants to predict the con-

sumer share of each soap brand at a new supermarket, which also sells milk. The

analyst could write a model that predicts the share of consumers that purchase each

(soap, milk) pair. Because the menu is separable, the analyst could, alternatively,

think of the soap decision separately, and predict choices in a menu that only includes

the actions ta, bu, ignoring the consumer purchases of milk. Our IID axiom is the

assumption that the predicted choice probabilities for soap will be independent of the

two modeling options. Hence, the analyst may ignore the milk choice. Without IID,

a model may provide different predictions for soap choices, depending on whether or

not the choice of milk was included in the model, and furthermore on whether many

other irrelevant choices were included, such as whether the shopper paid with cash

or card, or what color shirt they chose to wear in the morning.

Note that IID does not exclude the possibility that these choices are correlated:

it is possible that consumers who buy better soap are more likely to buy better

milk. However, since there is no complementarity or substitutability between the two

products, the menu of milks that consumers face is irrelevant to the menu of soaps.

Accordingly, IID requires that a model yield the same predictions for soap, regardless

of whether or not the choice of soap is modeled in conjunction with the choice of milk.

In a sense, when an analyst decides to exclude an unrelated choice from their model,

they are implicitly assuming that IID holds. We thus argue that IID is a reasonable

positive assumption on the analyst and the set of possible models they may use to

describe decision makers. Of course, for the choice of jacket and pants, where the

menu is not a product menu, IID imposes no restrictions.

Our main result is that mixed-logit rules are the only ones that satisfy mono-

tonicity, continuity and IID (Theorem 1). Moreover, the mixing measure over the

logit parameter is identical across all menus. Thus, even though the IID axiom only

restricts predictions for product menus, its conjunction with monotonicity and conti-
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nuity implies that all choices—including in non-product menus—are made according

to the same mixed logit rule.

This result provides a simple, novel foundation for this widely used choice rule. It

also shows that either IID or monotonicity is violated by all other stochastic choice

rules, such as one-shot probit and separable probit. Indeed, one-shot probit vio-

lates IID, while separable probit violates monotonicity (see §5). The theorem thus

highlights that modeling even one decision instance with a rule that is inconsistent

with mixed logit carries hidden global assumptions.1 Regardless of how behavior is

modeled on other menus, such a decision maker must either be influenced by the

presence of irrelevant decisions (violating IID) or fail to choose better actions with

higher probability (violating monotonicity).

A natural interpretation of our theorem is that it characterizes the behavior of

a stochastic payoff maximizer in the presence of unobservable heterogeneity. Each

realization of this heterogeneity gives rise to a distinct multinomial logit rule, corre-

sponding to stochastic utility maximization with a particular level of utility shocks.

The observed choice behavior, which takes the form of a mixture over such logits, thus

reflects an average over this unobserved variation—whether across different individ-

uals in a population or across multiple “selves” of a single decision maker, randomly

realized at the time of choice. Importantly, this behavioral structure is not assumed

and emerges as an inevitable consequence of our axioms.

Geometrically, the theorem shows that the set of stochastic choice rules satisfying

the axioms is the convex hull of multinomial logit rules, which constitute its extreme

points. These extreme rules can be characterized by strengthening IID to a more

demanding axiom, which we call decomposability. Decomposability further requires

that irrelevant choices are made independently, e.g., that decision makers choose soap

and milk independently. We show that rules satisfying monotonicity, continuity and

decomposability are exactly multinomial logit rules (Corollary 1).

According to Theorem 1, the mixing over multinomial logit rules remains constant

across menus. An important consequence, explored in Proposition 1, is that any rule

satisfying monotonicity, continuity, and IID must exhibit non-negative correlation in

choice probabilities across product menus. Intuitively, individuals who experience

less noise in one dimension of the menu will likewise experience less noise in the other

1Proposition 2 below shows that already on menus with three alternatives there are choice prob-

abilities that are inconsistent with any mixed logit model.
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dimension. The impossibility of negative correlation is not immediately apparent

from the axioms. In particular, it is not a direct implication of IID, which allows for

any correlation structure of choice probabilities in product menus. Instead, it is a

joint implication of the three axioms put together.

To highlight another implication of our axioms, we show a novel property of mixed

logit, which already applies to very simple menus with three actions. As an example,

consider a menu with actions a, b and c, yielding payoffs 0, 2 and 7, respectively.

Suppose that we observe that action a is chosen with probability 5%. What do the

axioms imply for the choice probability of c? As it turns out (see §4), IID by itself

does not imply any constraints. Monotonicity implies that the probability of choosing

c is at least half of the complementary probability, 47.5%. Continuity imposes no

restrictions. Interestingly, the three axioms together imply that the probability of c

is at least 83.8%. This lower bound corresponds to the choice probability of c in the

unique multinomial logit rule under which a is chosen with probability 5%. More

generally, we show that under mixed logit, given the choice probability for the lowest

payoff action, the choice probability for the highest payoff action is at least the choice

probability under multinomial logit (Proposition 2).

In §6 we extend our main result to menus in which outcomes are not just one-

dimensional payoffs, but rather take values in Rn. We offer a number of interpretations

to this settings, including choice among production plans, choice under ambiguity,

and choice among Gaussian lotteries. In all of these cases, IID has a straightforward

interpretation, as does the resulting mixed-logit rule.

In the first application, a menu represents a choice by a firm between production

plans, where each plan is characterized by the quantities of different inputs it requires

and the outputs it produces. The IID axiom means that a firm that has two factories

that do not affect each other will make separate choices of plans. Our results show

that firms act as if they are maximizing profit under some prices for the inputs and

outputs. These prices can be inferred from the choice probabilities.

In the choice under ambiguity application, the outcome associated with an action

is a Savage act, or a vector of state-contingent payoffs, rather than a fixed payoff, as

in our one-dimensional model. Our results state that a model satisfying our axioms

describes a population of subjective expected-payoff maximizing agents, each with a

prior about the state and a level of noise. Since the only rationality assumption intro-

duced directly by the axioms is monotonicity, beliefs and expectation maximization
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emerge from IID.

1.1 Related Literature

Mixed logit, a weighted average of multinomial logit rules, is a widely used model of

randomness across various fields, including economics, psychology, statistics, machine

learning, and statistical mechanics. Its simple structure and flexibility allow it to

overcome the limitations of multinomial logit and accurately approximate empirical

choice behavior (McFadden and Train, 2000; Train, 2009; Anderson, De Palma, and

Thisse, 1992).

Despite its importance, characterizing mixed logit axiomatically—without relying

on its functional form—has proven challenging. Saito (2017) provides two character-

izations, though in a different setting. Saito considers a decision-maker with beliefs

over possible menus, whose choice function is defined on sub-menus of a grand menu.

One characterization requires that the agent’s random choice be superior to the worst

naive choice. The other, based on the positivity of the Block-Marschak polynomi-

als, aligns with characterizations of general random utility models (Falmagne, 1978;

Clark, 1996; McFadden and Richter, 1990). Axiomatic approaches have also been

used for other generalizations of multinomial logit that share similarities with mixed

logit, such as attribute rules or nested logit rules (Gul, Natenzon, and Pesendorfer,

2014; Kovach and Tserenjigmid, 2022) and multinomial logit with alternative priori-

ties (Echenique, Saito, and Tserenjigmid, 2018).

In contrast to mixed logit, multinomial logit enjoys numerous characterizations.

Its early popularity stemmed from its micro-foundation as a random-utility model

with Gumbel-distributed shocks (Luce and Suppes, 1965), and its analytical tractabil-

ity, providing explicit formulas for choice probabilities and welfare, unlike other ran-

dom utility models that require Monte Carlo methods. Multinomial logit is also cen-

tral to quantal response equilibrium, a generalization of Nash equilibrium for agents

prone to errors (McKelvey and Palfrey, 1995).

According to Luce (1959), a choice rule exhibits independence of irrelevant alter-

natives (IIA) if the relative probabilities for a subset of alternatives do not depend

on the presence of other alternatives in the choice set. Unlike IIA, which constrains

behavior across nearly identical menus—such as those generated by duplicating an

action, as in Debreu (1960)—IID places no restrictions in such settings. Instead, IID
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applies only to decisions made in separate, non-overlapping contexts.

Luce (1959) demonstrated that any behavior satisfying IIA can be generated by

multinomial logit for some choice of utilities. In our setting—as in the analysis of

random utilities—the scale of utilities is given. For a given scale, IIA implies that the

probability of an alternative must be proportional to some fixed function of its utility.

Multinomial logit corresponds to the exponential function, but IIA is also compatible

with any other.

Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2021b) and Breitmoser

(2021) characterize multinomial logit for a given utility scale. Both papers augment

IIA with several other axioms to pin down the exponential dependence. Cerreia-

Vioglio, Maccheroni, Marinacci, and Rustichini (2021b) characterize the whole one-

parametric family of logit rules via axioms relating the rule’s behavior across differ-

ent noise levels and implying the multiplicative property of the exponent. Breitmoser

(2021) pins down the exponential dependence by requiring translation invariance. An-

other related paper is Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2022),

who characterize logit in a dynamic context. IIA underpins all these results; its ra-

tionality foundations are discussed by Cerreia-Vioglio, Lindberg, Maccheroni, Mari-

nacci, and Rustichini (2021a). Yellott (1977) shows that a version of IIA pins down

multinomial logit withing the class of independent random utility models with shock

distribution fixed across menus; see also Luce and Suppes (1965) and Ragain and

Ugander (2016). In contrast, our framework starts from a broader class of choice

rules—including those with correlated or menu-dependent shocks, or not correspond-

ing to stochastic utility maximization at all—and narrows it down purely through

axioms. Absent IID, behavior across menus can be entirely unrelated.

Matějka and McKay (2015) develop a model combining choice with a given utility-

scale and the rational-inattention framework of Sims (2003). They demonstrate

that multinomial logit captures the behavior of a utility-maximizing individual with

entropy-based attention cost. Woodford (2014) and Mattsson and Weibull (2002) de-

rive related results for binary choices and costly effort, respectively. Steiner, Stewart,

and Matějka (2017) obtain an entropy-cost characterization of dynamic logit; see also

Fudenberg and Strzalecki (2015). The result of Matějka and McKay (2015) supports

the conclusion of Camara (2022) that cognitive costs force decision-makers to split

problems into unrelated sub-problems whenever possible.

Our axioms of independence of irrelevant decisions and decomposability have
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some similarities to separability notions in dynamic or multi-agent choice. Cham-

bers, Masatlioglu, and Turansick (2021) and Kashaev, Plávala, and Aguiar (2024)

consider the choice behavior of two agents (or of a single agent over two periods)

and study its separability, i.e., whether a joint distribution over choices is compatible

with the existence of a single distribution over utility pairs; see also Frick, Iijima, and

Strzalecki (2019); Li (2021); Kashaev, Gauthier, and Aguiar (2023) for multi-period

dynamic random utility models. In a multi period context, Fudenberg, Lanzani,

and Strack (2025) show that mixed probit describes the limiting choice of an agent

with bounded memory and Gaussian information. Sandomirskiy, Sung, Tamuz, and

Wincelberg (2025) explore a version of our decomposability axiom in multi-agent

strategic environments, axiomatizing Nash and quantal response equilibria as well as

new solution concepts.

2 Model

We study the choice behavior of a decision maker across a variety of decisions. Let A
be a universal set of actions that the decision maker could possibly take. We assume

that this set is non-empty and closed under the operation of forming ordered pairs. In

other words, if a1, a2 P A then the pair pa1, a2q is also an element of A. For example,

if a1 is the action of buying a certain soap and a2 is the action of buying a certain

milk, then pa1, a2q is the action of purchasing both. Note that this condition implies

that A is infinite.2 We further assume that A is countable.

The set of possible outcomes of a decision is denoted by O. A single decision

instance is represented by a menu pA, oq, where A Ă A is a finite set of possible

actions and o : A Ñ O assigns an outcome to each action. The outcome of an action

encapsulates all the information about this action relevant to the decision-maker. In

contrast, the name of the action is just a label, and we think of it as carrying no

significance for the decision maker.

We formalize the model and discuss the results for O “ R. This benchmark

outcome space can be used to model decision-makers who compare actions by a

single number, such as their monetary reward—and we accordingly refer to outcomes

as payoffs. More general outcome spaces are considered in §6.
2Indeed, if a P A, then pa, aq P A, and hence ppa, aq, aq P A, and so on.
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We display a menu by showing each action’s outcome below it. For example,

pA, oq “

"

a

3.14

b

´17

*

is a menu with two actions, choosing a or b, with the former having a monetary

reward of 3.14 and the latter having a reward of ´17.

The collection of all menus is denoted by M. It consists of all pairs pA, oq where A

is a finite subset of A and o is a function from A to R. The richness ofM distinguishes

our approach from the standard stochastic choice setting in which menus are subsets

of some fixed finite set of alternatives.

Another distinguishing feature of our approach is that it abstracts from the in-

ternal structure of alternatives and focuses solely on the payoffs induced by actions.

This is in line with the random utility model literature, where utilities are taken as

primitives. Our approach also admits a game-theoretic interpretation: a menu can be

viewed as a one-player normal form game. Since actions are treated as mere labels,

the same action may appear in different menus and result in different outcomes.3

A stochastic choice rule is a map Φ that assigns to each menu pA, oq P M a

probability distribution over A. We denote by Φpa | A, oq the probability that ΦpA, oq

assigns to a P A. We think of Φ as describing or predicting the choices of a decision

maker across different situations.

One family of widely used stochastic choice rules consists of the independent ad-

ditive random utility models (IARU), which are given by

IARUpa | A, oq “ P
”

opaq ` εa “ max
bPA

opbq ` εb

ı

,

where opaq is interpreted as the utility of action a and pεbqbPA are independent shocks

with a common continuous CDF F . When these shocks follow the Gumbel distribu-

tion with a positive scale parameter 1
β
, i.e., F pxq “ expp´ expp´β ¨ xqq, this is the

multinomial logit rule (MNL), which is given by

MNLβ
pa | A, oq “

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq
.

While the multinomial logit rule is commonly used in the empirical literature for

its computational tractability, it does not allow for random taste variation, various

3For example, an action a may represent the decision to buy a brand of soap in one menu, and

represent the decision to wear a shirt of a particular color in another menu.
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substitution patterns, and correlation in unobserved factors over time (Train, 2003).

Some of these limitations are overcome by the mixed-logit rule (ML), which is a

weighted average of multinomial logit rules, given by

MLµ
pa | A, oq “

ż

MNLβ
pa | A, oq dµpβq.

It is parameterized by a probability measure µ over the logit parameter β.

We consider several properties of stochastic choice rules. The first one is mono-

tonicity. Monotonicity captures a sense in which the decision maker’s choices are

driven by preferences for higher payoffs. In particular, it limits the possible influence

of action labels on choice behavior.4

Axiom 1 (Monotonicity). A rule Φ is monotone if for any menu pA, oq in M and

any a, a1 P A such that opaq ě opa1q it holds that Φpa | A, oq ě Φpa1 | A, oq.

That is, a rule Φ is monotone if an action with a higher payoff is chosen with

a higher probability than one with a lower payoff. Note that this axiom does not

impose any constraints across menus, but only within a given menu.

Monotonicity is satisfied by all IARU models. Moreover, the class of stochastic

choice rules that satisfy monotonicity is convex, i.e., a mixture of monotone rules is

monotone. In particular, the mixed-logit and mixed-probit models satisfy monotonic-

ity.

For a fixed set of actions A, we say that a sequence of menus pA, onq converges

to pA, oq if limn onpaq “ opaq for all a P A.

Axiom 2 (Continuity). A rule Φ is continuous if for any sequence of menus pA, onq

from M converging to pA, oq, we have limnΦpa | A, onq “ Φpa | A, oq for all a P A.

Alternatively put, continuity stipulates that very small changes in the outcomes

result in very small changes in choice probabilities. This axiom excludes stochastic

choice rules that describe individuals who pay excessive attention to even negligible

differences in outcomes. For instance, it is violated by rules that always select one

4While our model is motivated by the view that only outcomes matter to the decision maker, the

definition of a stochastic choice rule by itself does not preclude dependence of choice probabilities

on labels, thus potentially allowing for framing effects. As we will see, such effects will be ruled out

as a byproduct of our main result.
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of the highest-payoff actions, regardless of how small the advantage is. Nevertheless,

continuity is a common modeling choice made for good reason: people do not al-

ways choose the dominant action, especially when the difference between outcomes is

minuscule.

Our main axioms concern choice rule predictions on menus that represent combi-

nations of unrelated decisions. We say that pA, oq is a product menu if

A “ A1 ˆ A2 and opa1, a2q “ o1pa1q ` o2pa2q. (1)

That is, A consists of action pairs a “ pa1, a2q with a1 P A1 and a2 P A2, and the

outcome assigned to each pair is additively separable. We write pA, oq “ pA1, o1q b

pA2, o2q and refer to pA, oq as the product of pA1, o1q and pA2, o2q.

For example, suppose an experimenter runs two tests consecutively on the same

subject. In the first test, the subject chooses between two actions a and b, and receives

payoff 0 or 1, accordingly. In the second, the subject chooses between s and t, and

again receives 0 or 1. Indeed, many experiments contain comprehension questions

and pay subjects for each correct answer.

The first test would be well-modeled by the menu pA1, o1q, with A1 “ ta, bu and

o1paq “ 0, o1pbq “ 1. Likewise, the second test would be well-modeled by pA2, o2q,

with A2 “ ts, tu and o2psq “ 0, o2ptq “ 1. The joint decision the subject faces is the

product menu

pA, oq “

"

a

0

b

1

*

b

"

s

0

t

1

*

“

"

(a,s)

0

(a,t)

1

(b,s)

1

(b,t)

2

*

“

$

’

&

’

%

s t

a 0 1

b 1 2

,

/

.

/

-

.

Alternatively, the experimenter could only award the subject if both questions are

answered correctly. This experiment would be well-modeled by the menu

pA, o1
q “

"

(a,s)

0

(a,t)

0

(b,s)

0

(b,t)

1

*

“

$

’

&

’

%

s t

a 0 0

b 0 1

,

/

.

/

-

.

This is not a product menu, even though the action set is a product set (indeed, the

same product set), because the payoffs are not additively separable.

Outside of the experimental lab, the menu pA, oq could represent a choice between

two brands of soap, made together with a choice between two brands of milk. As is
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standard in the empirical literature, one can think of actual payoffs as comprising the

payoffs in these menus, plus an idiosyncratic shock. The fact that pA, oq is a product

menu would capture the lack of substitutability or complementarity between these

products. In contrast, the menu pA, o1q could be used to model a choice of jacket and

pants, assuming that both have to be chosen correctly for the suit to work.

Product menus may remain appropriate when unrelated choices are influenced

by prices. For instance, suppose the payoffs from consuming soaps and milks in the

absence of prices are given by pA, oq, and prices are ppaq, ppbq for soap and qpsq, qptq

for milk. Then the combined decision can be represented as

$

’

&

’

%

s t

a 0 ´ ppaq ´ qpsq 1 ´ ppaq ´ qptq

b 1 ´ ppbq ´ qpsq 2 ´ ppbq ´ qptq

,

/

.

/

-

.

Note that this model would only be appropriate in the absence of wealth effects and, in

particular, no binding budget constraint. For example, a situation where the bundle

pb, tq exceeds the budget, may be modeled by assigning a prohibitively negative payoff

to that cell, thus breaking the product structure. More broadly, the presence of budget

constraint or other joint constraints can generate interdependencies between otherwise

unrelated decisions, in which case their combination would no longer correspond to a

product menu.

Importantly, we do not assume that arbitrary combinations of decisions give rise

to product menus. While any such combination involves taking the Cartesian product

of the underlying action sets, the associated outcomes need not take the separable

form (1), as the examples above illustrate. Nonetheless, the richness of the menu

collection M implies that a choice rule must provide predictions to what a decision

maker will do when faced with a product menu.

Our main axiom, IID, restricts the choice rule only on product menus. It re-

quires that choice predictions for a product menu be consistent with predictions for

each component considered separately. We begin by discussing a stronger assump-

tion, which additionally requires statistical independence of choices across the two

dimensions of a product menu.

Axiom 3 (Decomposability). A rule Φ satisfies decomposability if for all product
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menus pA, oq “ pA1, o1q b pA2, o2q in M, it holds that

Φppa1, a2q | A, oq “ Φpa1 | A1, o1q ¨ Φpa2 | A2, o2q (2)

for all pa1, a2q P A.

For example, suppose we observe the choice probabilities of pA1, o1q and pA2, o2q

to be

Φ

ˆ

a

0

b

1

˙

“ Φ

ˆ

s

0

t

1

˙

“ p1{3, 2{3q.

Decomposability requires that for the product menu,

Φ

¨

˚

˝

s t

a 0 1

b 1 2

˛

‹

‚

“

s t

a 1{9 2{9

b 2{9 4{9

.

Decomposability means that, for product menus, the prediction is the same as

when that decision is made in isolation. Moreover, the predicted distribution is

statistically independent across the two dimensions. In the experimental lab example,

this would imply that subjects choose the wrong answer independently in the two

questions they are asked, when they are rewarded separately for each correct answer.

Decomposability imposes no restriction on predicted behavior in situations where

subjects are rewarded only for answering both questions correctly, as such situations

do not correspond to product menus.

While decomposability is a simple separability assumption, in some settings its

independence component may be unrealistic, especially in the presence of unobserv-

able heterogeneity. In the lab example, one could expect that subjects who answer

the first question correctly are more likely to also answer the second correctly. In

the soap-milk example, we might expect that consumers who are more careful when

choosing soap are also more careful in their choice of milk, causing correlation when

the two choices are made together.

The IID axiom is a weakening of decomposability, allowing for such correlations

while maintaining consistency with predictions for the components. Given a product

menu pA, oq “ pA1, o1qbpA2, o2q, we denote the marginal choice probability of a1 P A1

by

Φpa1 | A, oq “
ÿ

a2PA2

Φ ppa1, a2q | A, oq .
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Axiom 4 (IID). A rule Φ satisfies independence of irrelevant decisions if for

all product menus pA, oq “ pA1, o1q b pA2, o2q in M, it holds that

Φpa1 | A, oq “ Φpa1 | A1, o1q (3)

for all a1 P A1.

For example, for the menu pA, oq “ pA1, o1q b pA2, o2q above, IID implies that if

Φ

ˆ

a

0

b

1

˙

“ Φ

ˆ

s

0

t

1

˙

“ p1{3, 2{3q,

then

Φpa | A, oq “ Φppa, sq | A, oq ` Φppa, tq | A, oq “
1

3
.

Thus, IID allows for predictions such as

Φ

¨

˚

˝

s t

a 0 1

b 1 2

˛

‹

‚

“

s t

a 1{6 1{6

b 1{6 3{6

,

which is not a product measure, but it does not allow

Φ

¨

˚

˝

s t

a 0 1

b 1 2

˛

‹

‚

“

s t

a 1{8 2{8

b 2{8 3{8

.

Like decomposability, the IID axiom imposes no restrictions on choice rule predictions

for non-product menus such as pA, o1q.

IID means that predictions are independent of the inclusion of an unrelated menu

into the analysis. In other words, for product menus, the predicted choice frequency

of an action in the first dimension is consistent with predictions when only that

dimension is considered.

Without the assumption of IID, a modeler would have to include all irrelevant

decisions that the population faces in order to make an accurate prediction. Thus

an analyst who wants to predict the consumer share of soap brands would have to

investigate other, unrelated decisions consumers face, such as which milk they buy

or which color shirt they choose to wear. On the other hand, with IID, these various

decisions can all be ignored without affecting the relevant predictions.

14



IID is satisfied by multinomial logit, and, more generally, by a class of models

that we call separable IARU ; in fact, these models satisfy decomposability. In these

models, shocks are added independently for each dimension of a product menu. This

is in contrast with the standard IARU models in which shocks are added directly to

choice pairs in a product menu as if the choices were made in one shot.

In separable IARU models, if a consumer is purchasing a milk and a soap, they

choose the best milk subject to some noise and the best soap subject to some addi-

tional noise, with the noises independent for the two choices. Such a model could also

be applied in a dynamic setting: a consumer chooses milk both today and tomorrow,

and faces independent shocks for the two periods.5 In one-shot IARU models, con-

sumers choose the best milk-soap pair subject to some noise that is added to each

pair. For a non-product menu, separable IARU and one-shot IARU models coincide.

We formally define separable IARU models recursively, as follows. Φ is a separable

IARU model if there exists a shock distribution ε such that the following holds.

• For a menu pA, oq “ pA1, o1q b pA2, o2q, which is a non-trivial product, i.e., with

|A1| ě 2 and |A2| ě 2, it holds that

Φppa1, a2q | A, oq “ Φpa1 | A1, o1q ¨ Φpa2 | A2, o2q.

That is, shocks are applied independently to each dimension.

• Otherwise,

Φpa | A, oq “ Propaq ` εa “ max
bPA

opbq ` εbs, (4)

where pεbqbPA are independent and distributed as ε.

Interestingly, while the one-shot logit rule can be written as a separable IARU model,

the one-shot probit rule cannot. Indeed, it turns out that the one-shot probit rule

violates IID. See §5.
The IID axiom by itself allows for a wide range of choice rules. These include all

separable IARU models, but also their mixtures, since the class of stochastic choice

models that satisfy IID is convex. In particular, mixed logit satisfies IID.

5We thank an anonymous referee for suggesting this example.
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2.1 Implications of the Axioms

The main result of this paper is a characterization of all monotone, continuous rules

that satisfy IID. Before presenting our main result, we illustrate that while each

of these axioms on its own is rather weak, together they have surprisingly strong

implications.

For example, consider an analyst who is interested in choice probabilities in the

menu

pA, oq “

!a1
0

a2
2

a3
7

)

.

Suppose that the analyst observes the choice probability of the action a1 to be 5%,

i.e., Φpa1 | A, oq “ 5%.

Clearly, monotonicity implies Φpa3 | A, oq ě 47.5%, since Φpa2 | A, oq ` Φpa3 |

A, oq “ 95% and Φpa2 | A, oq ď Φpa3 | A, oq. Without monotonicity, IID yields no

constraints for Φpa3 | A, oq, since pA, oq is not a product menu (indeed, even decom-

posability has no further implications). Naively, the combination of monotonicity and

IID does not seem to imply any further constraints.

Surprisingly, this intuition is wrong. It turns out that if we assume that Φ is

monotone and satisfies IID, then Φpa1 | A, oq “ 5% implies that Φpa3 | A, oq ě 83.8%.

This bound is tight: if we make the stronger assumption that Φ is monotone and

decomposable, then Φpa1 | A, oq “ 5% implies that Φpa3 | A, oq “ 83.8%. As we

explain in detail below, this is a consequence of our main results. Note that our main

results also assume continuity, but this axiom is not needed in this example, since all

payoffs are integer. Continuity allows us to extend to real payoffs. Indeed, there is a

unique Φ that is monotone, decomposable, continuous, and satisfies Φpa1 | A, oq “ 5%.

3 IID and Mixed Logit

Recall that for µ supported on R`, the mixed-logit rule given by

MLµ
“

ż

MNLβ dµpβq (5)

satisfies monotonicity, continuity, and IID. Our first theorem states that no other

rules satisfy these axioms.
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Theorem 1. Let Φ satisfy monotonicity, continuity, and IID for the outcome space

O “ R. Then Φ coincides with a mixed-logit rule MLµ for some µ supported on R`.

Theorem 1 is proved in §7. An interpretation of the theorem is that any decision

maker satisfying the assumptions behaves as a stochastic payoff maximizer, whose

magnitude of payoff shocks, captured by the parameter β, is itself random. Condi-

tional on each realization of β, choices follow a multinomial logit rule. The realized

magnitude is unobservable and thus the observable choice takes the form of a mixture

over such logits, with mixing distribution µ. This distribution may reflect heterogene-

ity in noise magnitude across a population or variability of the internal state of a single

individual. Notably, the fact that choice probabilities follow a random utility model

emerges from the axioms and is not assumed a priori.

The theorem highlights several additional consequences of the axioms, beyond

explicitly characterizing the form of choice rules consistent with them. First, while our

definition of a stochastic choice rule and each axiom in isolation permit dependence

on action labels, the axioms jointly rule this out: only the profile of outcomes in the

menu can affect choice probabilities, eliminating framing effects. Second, although

IID—the only axiom linking behavior across menus—places no restrictions on non-

product menus by itself, its interaction with the other axioms pins down behavior on

all menus. As a result, the same mixed-logit rule governs choice even in compound

decisions that are not representable as product menus—for example, those involving

interrelated choices or shared constraints.

Theorem 1 also has implications for possible choice correlation across unrelated

decisions. Because the mixing distribution µ is fixed across all menus, choices in prod-

uct menus must exhibit non-negative correlation: lower shock magnitudes (and thus

better decisions) tend to occur simultaneously across the components of a product

menu. This pattern is a joint consequence of the three axioms rather than of IID,

which allows for arbitrary correlation in product menus. We are not aware of a direct

proof of the fact that our axioms imply non-negative correlation.

Formally, we define correlation as follows. Given a menu pA, oq and a function

f : A Ñ R we will write Φpfpaq | A, oq “
ř

a fpaqΦpa | A, oq for the expectation

of f under the probability measure Φp¨|A, oq. A stochastic choice rule Φ exhibits

non-negative correlation on a product menu pA, oq “ pA1, o1q b pA2, o2q if

Φ
´

o1pa1q ¨ o2pa2q

ˇ

ˇ

ˇ
A, o

¯

ě Φ
´

o1pa1q
ˇ

ˇ

ˇ
A1, o1

¯

¨ Φ
´

o2pa2q
ˇ

ˇ

ˇ
A2, o2

¯

. (6)
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We say that Φ exhibits zero correlation if (6) holds with equality. A menu pA, oq is

said to be non-trivial if o is non-constant.

In the example of the lab experiment in which every correct answer yields a payoff

of one, non-negative correlation means that when a subject answers the first question

correctly they are (weakly) more likely to answer the second one correctly.

Proposition 1. For any probability measure µ, MLµ exhibits non-negative correlation

on every product menu. Moreover, MLµ exhibits zero correlation on a product of non-

trivial menus if and only if µ is a Dirac measure.

The proof of Proposition 1 appears in §B, and is straightforward. What is more

surprising is that every rule that satisfies our axioms has non-negative correlation.

In §5 we provide an example demonstrating that probit models do not always exhibit

non-negative correlation, highlighting the connection between this property and our

axioms.

As a direct corollary of Theorem 1 and Proposition 1, we characterize multinomial

logit rules by strengthening IID to decomposability.

Corollary 1. Let Φ satisfy monotonicity, continuity and decomposability for the

outcome space O “ R. Then Φ coincides with a multinomial logit rule MNLβ for

some β ě 0.

Instead of decomposability in Corollary 1, it is enough to assume that Φ satisfies

IID and exhibits zero correlation on a product of a pair of non-trivial menus. Proposi-

tion 1 also implies the well-known fact (see Fox, il Kim, Ryan, and Bajari, 2012) that

a non-degenerate mixture of multinomial logit rules cannot itself be a multinomial

logit rule. This yields a geometric interpretation of Theorem 1: the set of choice rules

satisfying monotonicity, continuity, and IID is convex, with multinomial logit rules

as its extreme points.6

6An extreme point of a convex set is one that cannot be written as a non-trivial convex com-

bination of others. In this light, representation (5) mirrors the Choquet theorem: any choice rule

satisfying the axioms can be expressed as a mixture of extreme points. Fox et al. (2012) show that

this representation is unique, that is MLµ
“ MLµ1

implies µ “ µ1, so the space of such rules forms

an infinite-dimensional simplex. This fact also follows from Proposition 5 in §7, which is a part of

the proof of our main theorem. In fact, this proposition shows that µ is already identified by the

choice probabilities on menus with integer outcomes.
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To illustrate the ideas behind Theorem 1, we sketch a direct proof for Corollary 1.

The proof of Theorem 1 follows a similar path, but does it in a more complicated,

random setting, making use of the De Finetti Theorem to show that Φ is a convex

combination of decomposable rules.

Suppose Φ is decomposable and monotone. We show that Φ (restricted to menus

with rational payoffs) is identified by its predictions for a single menu, and that this

implies that Φ is a multinomial logit rule. Assume we know ΦpB, rq for

pB, rq “

"

b0
0

b1
1

*

.

For the sake of this proof sketch, suppose also that both b0 and b1 are chosen with

positive probability. Our goal is to show how this knowledge pins down Φ on any

given menu pA, oq. Since multinomial logit rules are monotone and decomposable,

this will immediately imply that Φ is a multinomial logit rule, with the parameter β

chosen to agree with Φ on pB, rq.

For clarity, consider the particular example

pA, oq “

"

a1
´17

a2
´17

a3
42

*

.

The same idea will apply to any pA, oq.

By monotonicity Φpa1 | A, oq “ Φpa2 | A, oq. We will demonstrate that Φpa2 | A, oq

and Φpa3 | A, oq satisfy a certain identity. Consider the product of pA, oq with the

n-fold product of pB, rq:

pA, oq b pB, rq b pB, rq b ¨ ¨ ¨ b pB, rq
looooooooooooooooomooooooooooooooooon

n times

, (7)

where n “ opa3q ´ opa2q “ 59. In this menu, the two actions pa3, b0, b0, . . . , b0q and

pa2, b1, b1, . . . , b1q have the same outcome, and thus have the same probability by

monotonicity. Therefore, decomposability implies

Φpa3 | A, oq ¨ Φpb0 | B, rq
59

“ Φpa2 | A, oq ¨ Φpb1 | B, rq
59. (8)

Combined with the identities Φpa1 | A, oq “ Φpa2 | A, oq and Φpa1 | A, oq ` Φpa2 |

A, oq ` Φpa3 | A, oq “ 1, this equation pins down ΦpA, oq, which is therefore deter-

mined by ΦpB, rq. Since |B| “ 2, we can always choose β ě 0 such that ΦpB, rq “

MNLβ
pB, rq. Since multinomial logit also satisfies the same identities, we conclude

that ΦpA, oq “ MNLβ
pA, oq.
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4 Restrictions of Monotonicity and IID

The family of mixed-logit rules is parameterized by a probability measure, which is

an infinite dimensional object. This gives this family considerable flexibility to model

a wide range of behavior. Nevertheless, knowing that a rule belongs to this family

imposes significant restrictions on the choice probabilities, even within simple menus.

As we discussed above, for the menu

pA, oq “

!a1
0

a2
2

a3
7

)

it holds for every mixed-logit rule Φ that Φpa1 | A, oq “ 5% implies that Φpa3 |

A, oq ě 83.8%. Indeed, this lower bound of the choice probability of a3 turns out to

be MNLβ
pa3 | A, oq for the β that satisfies MNLβ

pa1 | A, oq “ 5%. The following

proposition shows that this is a general property of mixed-logit rules.

Proposition 2. Let A “ ta1, . . . , anu and opa1q ď opa2q ď ¨ ¨ ¨ ď opanq. Let β P R
be the (unique) logit parameter satisfying MNLβ

pa1 | A, oq “ Φpa1 | A, oq. If Φ is a

mixed-logit rule, then Φpan | A, oq ě MNLβ
pan | A, oq.

By a symmetric argument, we can get a lower bound on the probability of a1,

given the probability of an: if γ is such that MNLγ
pan | A, oq “ Φpan | A, oq, then

Φpa1 | A, oq ě MNLγ
pa1 | A, oq.

Proposition 2 highlights a property of mixed logit, independently of our main

results. But since our axioms imply mixed logit, it follows from this proposition and

our main results that every rule that satisfies our axioms also satisfies this property.

We do not know a direct proof of this.

Proof. If opa1q “ ¨ ¨ ¨ “ opanq, then it is trivial, since Φ and MNLβ are uniform

for all β, by monotonicity. Suppose then, that at least one of the inequalities is

strict. Without loss of generality, suppose opa1q “ 0. Define dpβq “
ř

i e
β¨opaiq. Let

Lpβq “ 1
dpβq

and Hpβq “ eβ¨opanq

dpβq
denote the logit choice probabilities of the low and

high alternatives, respectively, as a function of β.

Denote p “ Φpa1 | A, oq. Since dpβq is strictly increasing, the β solving Lpβq “ p

is uniquely pinned down by p. Let F pβq “ ´Lpβq, so that H and F are increasing

functions.

We show in Lemma 4 in the appendix that

´
H2

H 1
ď ´

L2

L1
“ ´

F 2

F 1
.
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Hence, by Pratt (1964), F˝H´1 is increasing and concave, i.e., L˝H´1 is decreasing

and convex, and its inverse H ˝ L´1 is convex. Because Φ is mixed logit, there is a

probability measure µ such that Φpan | A, oq “
ş

H dµ and p “
ş

L dµ. For such µ,

we have

Φpan | A, oq “

ż

H dµ “

ż

H ˝ L´1
˝ L dµ ě H ˝ L´1

ˆ
ż

L dµ

˙

“ H ˝ L´1
ppq “ Hpβq “ MNLβ

pan | A, oq.

The inequality follows from Jensen’s inequality since H ˝ L´1 is convex.

5 Probit Rules

Probit rules are a natural and widely used family of stochastic choice rules. One-shot

probit is an independent additive random utility (IARU) model with normal shocks,

so that

Φpa | A, oq “ P
”

opaq ` εa “ max
bPA

opbq ` εb

ı

,

were εb are independent Gaussians. Separable probit is a separable IARU model in

which each component in a product menu receives its own independent normal shocks

(see (4)). Our main result implies that these rules must violate our axioms. We show

that the popular one-shot probit rule violates IID. Perhaps more surprisingly, we

demonstrate that separable probit—which does satisfy IID—violates monotonicity.

We also show that probit rules may exhibit negative correlation, unlike mixed logit.

Consider the simple one-shot probit rule with standard Gaussian Np0, 1q shocks.

We examine its predictions for the menu

pB, rq “

"

b0
0

b1
1

*

(9)

and its “square”

pC, sq “ pB, rq b pB, rq “

b0 b1

b0 0 1

b1 1 2

.

The probit predictions are

ProbitpB, rq »
b0 b1

0.24 0.76
and ProbitpC, sq »

b0 b1

b0 0.033 0.175

b1 0.175 0.617

.
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Since the marginal probability of choosing b1 from pC, sq is 0.175` 0.617 “ 0.792,

which is greater than the choice probability of b1 from pB, rq, the probit rule vio-

lates IID. We also note that, unlike multinomial logit, which exhibits zero correlation

in product menus, the probit predictions for pC, sq exhibit negative correlation, as

Probitppb1, b1q | C, sq » 0.617 ă 0.627 » Probitpb1 | C, sq
2.

The reason underlying both effects is that the Gaussian distribution’s tails are too

light. When outcome differences are large, the light tails cause probit weights to drop

too quickly, much more so than in the logit case. When the differences are small

relative to the noise variance, probit is less sensitive to those differences than logit.

This leads to insufficient mass on pb0, b0q and excessive probability on mixed pairs like

pb1, b0q and pb0, b1q thus generating negative correlation and IID violation.

We now show that separable probit violates monotonicity. Let Φ be a separable

IARU with standard normal shocks. That is, Φ coincides with the one-shot probit on

each menu that cannot be represented as a non-trivial product, while the prediction for

product menus is defined as the product of predictions. This ensures decomposability

and thus IID. Consider the menus

pA1, o1q “

"

a

0

b

9

*

, pA2, o2q “

"

c

0

d

6

*

, pA3, o3q “

"

e

0

f

6

*

,

and let

pA, oq “ pA1, o1q b pA2, o2q b pA3, o3q.

Let G denote the CDF of the difference of two independent standard normals, i.e., a

normal distribution with mean zero and variance 2. Then Φpb | A1, o1q “ Gp9q and

Φpd | A2, o2q “ Φpf | A3, o3q “ Gp6q. Since Φ satisfies decomposability,

Φppa, d, fq | A, oq “ p1 ´ Gp9qq ¨ Gp6q
2

ă Gp9q ¨ p1 ´ Gp6qq
2

“ Φppb, c, eq | A, oq.

This violates monotonicity, since pa, d, fq has a higher outcome opa, d, fq “ o1paq `

o2pdq ` o3pfq “ 12, while opb, c, eq “ 9. This again traces back to the light tails

of the Gaussian: the probit weights decrease too sharply, leading to a reversal of

monotonicity when the rule is extended to product menus in a decomposable way.

The results above demonstrate that widely used rules, such as probit, violate our

axioms even in very simple menus.
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6 Higher Dimensional Outcomes

Theorem 1 generalizes to a higher dimensional setting, in which the outcome space

is O “ Rn rather than R. For menus with outcomes in Rn, the multinomial logit rule

with parameter β P Rn is given by

MNLβ
pa | A, oq “

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq
,

where β ¨ opaq is the dot product. Likewise, the mixed-logit rule with mixing measure

µ P ∆pRnq is given by

MLµ
pa | A, oq “

ż

MNLβ
pa | A, oq dµpβq.

The axioms extend verbatim to vector-valued outcomes, with opaq ě opa1q in the

monotonicity axiom interpreted as component-wise dominance.

Theorem 2. Let Φ satisfy monotonicity, continuity, and IID for the outcome space

O “ Rn. Then Φ coincides with a mixed-logit rule MLµ for some µ supported on Rn
`.

Theorem 2 is proved in Appendix D. It follows the proof strategy of Theorem 1,

and moreover uses that theorem as a building block.

In the following subsections, we provide a few applications of this theorem. These

applications differ in how elements in the outcome space are interpreted.

6.1 Choice under ambiguity

Let Θ be a finite set of states. An outcome x is a function x : Θ Ñ R, specifying
state-contingent payoffs. That is, x is a Savage act and the space of all outcomes can

be identified with O “ RΘ.

Decision-makers are ambiguous about the state θ P Θ and so may take into account

all the possible values xθ. Monotonicity, continuity and IID translate naturally to this

setting.

By Theorem 2, if Φ satisfies these axioms then there is a distribution µ over RΘ
`

such that

Φpa | A, oq “

ż

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq
dµpβq.
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We can write every nonzero β P Rn
` as β “ γ ¨ p, where γ P R` is given by γ “

ř

θ βθ,

and p P ∆pΘq is given by pθ “ βθ{γ. We can thus reparametrize by letting µ be

a distribution over R` ˆ ∆pΘq. Let pγ, pq be drawn from µ, so that γ is a random

positive number, and p is a random probability measure over Θ.

The choice probabilities thus correspond to a population of decision makers parametrized

by pγ, pq, each behaving as if they have a belief p over Θ according to which they

stochastically maximize their subjective expected payoff upaq “ p ¨ opaq, choosing an

action a with probability

exppγ ¨ upaqq
ř

bPA exppγ ¨ upbqq
.

When µ is a point mass (i.e., in the decomposable, multinomial logit case), there is

one belief p and one parameter γ, so that behavior is consistent with a stochastic

expected-payoff maximizer.

6.2 Mean-Variance Preferences

Our one-dimensional setting considers a set of actions, each yielding a deterministic

payoff. In this section we apply our higher dimensional setting to study actions yield-

ing random payoffs. We will assume that these payoffs are normally distributed, with

known expectation and variance, and that decision makers prefer higher expectation

and lower variance.

Accordingly, let the outcome space be O “ R ˆ R`, where the first component

is interpreted as the mean and the second component as the variance of a stochastic

Gaussian monetary reward. The monotonicity axiom implies that individuals choose a

with higher probability than b if a yields a stochastic payoff that has a higher expected

value and lower variance. As an example, consider the the following menu, in which

the decision-maker compares two investment decisions that differ substantially by

expected rewards and variances

pA1, o1q “

"

bond
`

5
2

˘

crypto
`

10
10

˘

*

.

Another example is choice between health insurance plans:

pA2, o2q “

"

a
`

´2
1

˘

b
`

´1
4

˘

*

,
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where plan a has lower expectation and lower variance, corresponding to higher cost

and better coverage.

In this setting, product menus correspond to combined choices in which the

stochastic payoffs are independent of each other, so that the expectations and vari-

ances are simply added. For example, the product menu

pA1, o1q b pA2, o2q “

"

(bond,a)
`

3
3

˘

(bond,b)
`

4
6

˘

(crypto,a)
`

8
11

˘

(crypto,b)
`

9
14

˘

*

corresponds to a choice of investment and a choice of health insurance, which have

independent outcomes, so that the variances are indeed summed.

Theorem 2 implies that decision probabilities correspond to a population of agents

with various mean-variance preferences. I.e., there is a distribution µ over pβ1, β2q P

R2
` such that agents evaluate an action a yielding a lottery with mean m and vari-

ance v according to upaq “ β1m ´ β2v, and choose a with probability

exppupaqq
ř

bPA exppupbqq
.

6.3 Production

A firm uses m inputs to produce n outputs. The outcome space is O “ Rm
´ ˆ Rn

`,

so that each outcome is a production plan specifying a quantity for each input and

output. A menu is a choice of production plans that are feasible to the firm. We

think of inputs as negative and outputs as positive, so that the monotonicity axiom

implies that decision makers are more likely to choose a plan with less inputs and

more outputs. A choice in a product menu corresponds to choosing to implement two

production plans separately, which yields the sum of the two production plans. For

example, this could model a choice of what to implement in two separate factories

that do not affect each other. The IID axiom implies that the same choices will be

made in the first factory, regardless of the existence of the second. This mirrors a

basic feature of standard general equilibrium models in which combining firms does

not change their optimal production plans.

Theorem 2 implies that the choice probabilities correspond to aggregate choices of

a collection of firms that face various prices and stochastically maximize their profits.

Namely, there is a distribution µ over prices in Rm`n
` such that each firm faces a
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random price p „ µ and chooses a from A with probability

exppp ¨ opaqq
ř

bPA exppp ¨ opbqq
.

The particular case of a multinomial logit rule corresponds to the existence of one

fixed (rather than random) price faced by all firms.

7 Proof of Theorem 1

The remainder of this paper is a proof of our main theorem, which we hope is of

technical interest in its own right. We first describe a classical result of De Finetti

regarding partially exchangeable processes. Then, using IID, we extend our stochastic

choice rules to infinite products of menus, to which we apply De Finetti’s Theorem.

Monotonicity ensures the partial exchangeability of a process defined by the extended

choice rule. The mixture of i.i.d. conclusion of De Finetti’s theorem then implies that

the choice rule is a mixture of multinomial logit rules.

7.1 De Finetti’s Theorem for Partially Exchangeable Processes

An important tool in our proof is the De Finetti Theorem for partially exchangeable

processes. Let pX1, X2, . . .q be a sequence of random variables, each taking values

in some finite set. We denote by T the tail sigma-algebra of this sequence, i.e., the

collection of all events that depend only on the values of Xi for large enough i and are

unaffected by modifications to any finite prefix. Let pXi1 , Xi2 , . . .q be a subsequence.

We say that this subsequence is exchangeable if its joint distribution is invariant to

any finite permutation of the coordinates.

Suppose that N “ t1, 2, . . .u can be written as a disjoint union of infinite sets

N “ N0 Y N1 Y N2 Y ¨ ¨ ¨ such that for all k it holds that pXiqiPNk
is exchangeable. In

this case we say that pX1, X2, . . .q is a partially exchangeable process.

The following is a classical result due to De Finetti (1980). It is a generalization

of the well-known De Finetti Theorem for exchangeable processes.

Theorem 3 (De Finetti). Let pX1, X2, . . .q be a partially exchangeable process, wit-

nessed by the partition N “ N0 Y N1 Y N2 Y ¨ ¨ ¨ . Then for each k there exists a

tail-measurable random variable Fk such that, conditioned on the tail sigma-algebra,
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it holds that (i) the random variables pX1, X2, . . .q are independent, and (ii) for i P Nk

the random variable Xi has distribution Fk.

The random distributions Fk are the empirical measures. That is, if ti1, i2, . . .u is

an enumeration of Nk, then

Fkpxq “ lim
n

1

n

n
ÿ

m“1

1Xim“x.

7.2 Extending Φ to Infinite Products

Let MX denote the subset of menus with outcomes in X Ď R and let M “ MR.

Since M is closed under b, a stochastic choice rule Φ is defined for any finite product

of menus. The following lemma shows that there is a unique way to extend Φ to

countable products of menus taking the form pA1, u1q b pA2, u2q b ¨ ¨ ¨ . We denote the

set of all countable products of menus with M8.7

The next proposition shows that when a rule satisfies monotonicity and IID, we

can extend it to countable products of menus. Moreover, this extension satisfies

partial exchangeability.

Let pA1, o1q, pA2, o2q, . . . be a sequence of menus, and let M “ pA1, o1qbpA2, o2qb

¨ ¨ ¨ P M8 be their product. Denote by Ω “
ś8

i“1Ai the set of sequences pa1, a2, . . .q

corresponding to a choice in each of the menus. For a finite product pA, oq “ pA1, o1qb

¨ ¨ ¨ b pAn, onq, a probability measure ΦpA, oq over
śn

i“1Ai describes the probability

of each choice. We will extend Φ to assign to the infinite product menu M a proba-

bility distribution over Ω. Given such a measure, denote by pX1, X2, . . .q the random

variables corresponding to the choice in each sub-menu, that is, Xipa1, a2, . . .q “ ai.

Proposition 3. If Φ satisfies monotonicity and IID, then there is a unique Ψ defined

on M8 such that for every M “ pA1, o1qbpA2, o2qb¨ ¨ ¨ P M8, ΨpMq is a probability

measure on Ω “
ś8

i“1Ai satisfying

ΨpMq

˜

!

a P Ω
ˇ

ˇ

ˇ
a1 “ b1, a2 “ b2, . . . , an “ bn

)

¸

“ Φ

˜

`

b1, b2, . . . , bn
˘

ˇ

ˇ

ˇ

ˇ

ˇ

n
â

i“1

pAi, oiq

¸

for all n and all pb1, b2, . . . , bnq. Moreover, if pAi1 , oi1q “ pAi2 , oi2q “ ¨ ¨ ¨ , then the

sequence of random variables pXi1 , Xi2 , . . .q is exchangeable.
7Formally, we may identifyM8 with the set of sequences inM. We only refer to infinite products

of menus for notational convenience.
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Proof. Equip Ω “
ś8

i“1Ai with the product topology, under which it is compact.

Note that the sets of the form Bb1,...,bn “ ta P Ω | a1 “ b1, a2 “ b2, . . . , an “ bnu are

clopen. In particular, given n ě 1 and a probability measure µn on
śn

i“1Ai, denote

by Ppµ0q the set of probability measures on Ω that agree with µn on sets of the form

Bb1,...,bn :

Ppµnq “

!

µ : µpBb1,...,bnq “ µnptpb1, . . . , bnquq

)

.

Then Ppµnq is a compact subset of the probability measures on Ω. It is also easily

seen to be nonempty.

Suppose that Φ satisfies IID. Denote by µn the measure on
śn

i“1Ai given by

Φpbn
i“1pAi, oiqq. By IID, µn`1 agrees with µn on Bb1,...,bn , so that Ppµn`1q Ď Ppµnq.

Since these sets are compact and non-empty, their intersection is non-empty, and so

there exists a probability measure µ on Ω that agrees with µn on Bb1,...,bn . Since the

latter sets form a subbase of the topology, the measure µ is unique: tµu “ XiPpµnq.

Finally, suppose that pAi1 , oi1q “ pAi2 , oi2q “ ¨ ¨ ¨ ; we would like to show that

sequence of random variables pXi1 , Xi2 , . . .q is exchangeable. To this end, it suffices

to show, without loss of generality, that if we permute Xi1 and Xi2 then the joint

distribution of any long enough prefix pX1, X2, . . . , Xnq of the entire sequence remains

unchanged. This follows from the monotonicity of Φ, since the joint distribution of

pX1, X2, . . . , Xnq is given by Φpbn
i“1pAi, oiqq, and by monotonicity, this distribution

assigns equal probabilities to sequences yielding the same total payoff, and payoffs

are preserved by permuting copies of the same menu, such as Xi1 and Xi2 , as long

as n is larger than both i1 and i2.

7.3 Mixed Logit from De Finetti

The next proposition is the heart of the proof of Theorem 1.

Proposition 4. If Φ satisfies monotonicity and IID, then there is a mixed-logit rule

MLµ with µ supported on r0,8s such that Φ|MZ “ MLµ
|MZ.

Proof. Let pB1, u1q, pB2, u2q, . . . be an enumeration of MZ, the set of all the menus

with integer payoffs. Note that MZ is countable, because the set of actions A is

countable. We choose

pB0, u0q “

"

ℓ

0

h

1

*

.
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Define the sequence of menus pA1, o1q, pA2, o2q, . . . as follows. Write the natural

numbers N “ N0 YN1 YN2 Y ¨ ¨ ¨ as a disjoint union of infinite sets, and given i P Nk,

set pAi, oiq “ pBk, ukq. Hence, there are infinitely many copies of each pBk, ukq in the

sequence pAi, oiqi.

By Proposition 3, there is a unique Ψ defined on M8 that marginalizes to Φ on

each finite product of menus. Recall that Ω “
ś8

i“1Ai. Let P denote the probability

measure on Ω given by Ψp
Â8

i“1pAi, oiqq, and let Xn be the coordinate projections,

i.e., Xnpa1, a2, . . . q “ an, with the tail σ-algebra of pX1, X2, . . . q denoted by T .

Fix any k ě 1. Enumerate Nk “ ti1, i2, . . .u and let

pY1, Y2, Y3, . . .q “ pXi1 , Xi2 , Xi3 , . . .q.

Enumerate N0 “ tj1, j2, . . .u. Let

pZ1, Z2, Z3, . . .q “ pXj1 , Xj2 , Xj3 , . . .q,

Hence Yi corresponds to the choice in the ith copy of Bk and Zi to the ith copy of B0.

By Proposition 3 we know that pY1, Y2, . . .q are exchangeable, as are pZ1, Z2, . . .q.

It therefore follows by De Finetti (Theorem 3) that there are tail-measurable random

distributions F and G, where F is a distribution over Bk and G is a distribution

over B0 “ tℓ, hu, and such that conditioned on the tail we have that pX1, X2, . . .q are

independent, with Yi chosen from F , and Zi chosen from G, so that

F pbkq “ PrYi “ bk | T s and Gpb0q “ PrZi “ b0 | T s, for any i. (10)

The distributions F and G are therefore the (random) empirical distributions of the

actions, i.e.,

F pbkq “ lim
n

1

n

n
ÿ

i“1

1Yi“bk and Gpb0q “ lim
n

1

n

n
ÿ

i“1

1Zi“b0 .

Denote

β “ log
Gphq

Gpℓq
,

and note that β is a random variable taking values in r´8,`8s. Let µ be the

distribution of β. We claim that ΦpBk, ukq is equal to MLµ
pBk, ukq. Since k is

arbitrary, and since pBk, ukqk enumerate MZ, showing this will complete the proof.
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Choose any a, a1 P Bk such that ukpaq ě ukpa1q and let d “ ukpaq´ukpa1q. By (10),

E
“

F paq ¨ Gpℓqd
‰

“ ErPrY1 “ a | T s ¨ PrZ1 “ ℓ | T s ¨ ¨ ¨PrZd “ ℓ | T ss.

Since Yi and Zi are independent conditioned on the tail,

E
“

F paq ¨ Gpℓqd
‰

“ ErPrY1 “ a, Z1 “ ℓ, . . . , Zd “ ℓ | T ss,

and so by the law of total expectation

E
“

F paq ¨ Gpℓqd
‰

“ PrY1 “ a, Z1 “ ℓ, . . . , Zd “ ℓs.

Note that the probability on the right hand side is the probability, under Ψ, of

choosing a in the first copy of pBk, ukq, and choosing ℓ in the first d copies of pB0, u0q.

Since Ψ agrees with Φ on finite products, and since Φ is monotone, it follows that this

probability is invariant to changing the choices to another set that yields the same

total payoff. Hence, since d “ o1paq ´ o1pa
1q,

E
“

F paq ¨ Gpℓqd
‰

“ PrY1 “ a1, Z1 “ h, . . . , Zd “ hs.

By the same argument used above, we have that the right hand side is equal to

E
“

F pa1q ¨ Gphqd
‰

, and so we have shown that

E
“

F paq ¨ Gpℓqd
‰

“ E
“

F pa1
q ¨ Gphq

d
‰

.

We will need to show a stronger version of this equality. In particular, let P be

monomial in F paq, F pa1q, Gpℓq, Gphq. Then we claim that

E
“

F paq ¨ Gpℓqd ¨ P
‰

“ E
“

F pa1
q ¨ Gphq

d
¨ P

‰

. (11)

For example, when P “ F pa1qGpℓq, then, following the argument above,

E
“

F paq ¨ Gpℓqd ¨ P
‰

“ PrY1 “ a, Z1 “ ℓ, . . . , Zd “ ℓ, Y2 “ a1, Zd`1 “ ℓs

“ PrY1 “ a1, Z1 “ h, . . . , Zd “ h, Y2 “ a1, Zd`1 “ ℓs

“ E
“

F pa1
q ¨ Gphq

d
¨ P

‰

.

The general case follows the same idea, introducing an event of the form Yi “ a,

Yi “ a1, Zi “ ℓ or Zi “ h for each term in the monomial, using distinct indices i each

time.
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By the linearity of expectation, we have that (11) holds for any polynomial P .

Thus, taking P “ F paqGpℓqd ´ F pa1qGphqd, we have that ErP 2s “ 0, so that

F paqGpℓqd “ F pa1
qGphq

d almost surely. (12)

Note that if d “ 0 then this proof yields that F paq “ F pa1q almost surely. Otherwise,

d “ ukpaq ´ ukpa1q ą 0. Let Eh be the event that Gphq “ 0, which is the event that

β “ ´8. It follows from (12) that F paq “ 0 conditioned on Eh. Since a and a1 are

an arbitrary pair such that ukpaq ą ukpa1q, we have F pbq “ 0 for any b that does

not yield lowest payoff. Likewise, we have F pcq “ 0 for any c that does not yield the

highest payoff conditioned on the event Eℓ where Gpℓq “ 0 and β “ `8. We thus

have that conditioned on β “ `8, F “ MNL`8
pBk, ukq, and likewise conditioned on

β “ ´8, F “ MNL´8
pBk, ukq.

Outside the union of Eh and Eℓ, β is finite, and it follows from (12) that

F paq

F pa1q
“ eβpukpaq´ukpa1qq

“
eβukpaq

eβukpa1q
.

Hence, also on the event pEℓ Y Ehqc we have that F “ MNLβ
pBk, ukq. We have thus

shown that F “ MNLβ
pBk, ukq, and so

Φpa | Bk, ukq “ PrYi “ as “ ErF paqs “ E
“

MNLβ
pa | Bk, ukq

‰

“ MLµ
pa | Bk, ukq.

7.4 Final Steps

In the next proposition, we show that the mixing measure of a mixed logit rule is

uniquely identified by the restriction to MZ.

Proposition 5. Suppose MLµ
|MZ “ MLν

|MZ. Then µ “ ν.

Proof. Given γ ą 0, define the sequence of menus pA1, o
γ
1q, pA2, o

γ
2q, . . . by An “

ta1, . . . , an, bu, o
γ
npakq “ 0, and oγnpbq “ t

logpnq

γ
u. Then

lim
n

MNLβ
pb | An, o

γ
nq “

$

’

’

’

&

’

’

’

%

0 if β ă γ

1{2 if β “ γ

1 if β ą γ.
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It follows that

lim
n

MLµ
pb | An, o

γ
nq “

1

2
µptγuq ` µppγ,8sq,

and so µ is identified by MLµ restricted to MZ.

Given Propositions 4 and 5, we are ready to prove our main theorem.

Proof of Theorem 1. We first show that Φ coincides with some MLµ on MQ. By

Proposition 4 there is some µ such that Φ restricted to MZ coincides with MLµ.

Define for k “ 1, 2, . . . , the rules Φk by

Φk
pA, oq “ Φ

ˆ

A,
1

k
¨ o

˙

. (13)

Note that such rules satisfy monotonicity and IID, since Φ does. Hence, by Propo-

sition 4 again, each Φk|MZ “ MLµk |MZ for some µk. By (13) and Proposition 5, it

follows that µ “ k˚µk.

For pA, oq P MQ, there is a positive integer k such that pA, k ¨ oq P MZ. Thus,

ΦpA, oq “ Φk
pA, k ¨ oq “ MLµkpA, k ¨ oq “ MLµ

pA, oq.

Thus, Φ|MQ “ MLµ
MQ

. By Lemma 1, µ is supported on the non-negative extended

reals. By continuity, µpt`8uq “ 0. Indeed, consider menus pA, onq where A “ ta, bu,

onpaq “ 0, and onpbq “ 1
n
. By continuity and monotonicity limnΦpa | A, onq “ 1

2
. If,

however, µpt8uq “ ε ą 0, then limnΦpa | A, onq ď 1
2
p1 ´ εq, violating continuity.

Fix any menu pA, oq and a P A. For n “ 1, 2, . . ., define ōn : A Ñ Q by ōnpaq “

1
n

rn ¨ opaqs. Since ōnpaq Ñ opaq, by continuity, we have ΦpA, oq “ limnÑ8 ΦpA, ōnq.

Hence, Φ is uniquely determined by Φ|MQ . Since Φ|MQ “ MLµ
|MQ , and since MLµ is

continuous, it follows that Φ “ MLµ.

8 Conclusion

This paper explores a novel approach to stochastic choice. We model the behavior

of an individual across a rich variety of situations, under the key assumption that

choices remain consistent when unrelated decisions are combined. Though often im-

plicit, this assumption underpins the validity of experimental analyses that focus on

isolated decision problems. In this paper, the corresponding IID axiom is taken as an
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assumption. But this assumption can be easily tested in a lab, by providing subjects

with different menus yielding carefully selected monetary payoffs, and seeing whether

their choice probabilities satisfy (3), the defining property of IID.

While the axioms we impose are quite mild, the richness of the domain allows

a strong conclusion: the individual’s behavior must follow a fixed mixed logit rule

across all contexts. This result allows one to predict choice behavior when the payoffs

are observable. But it also has implications for an analyst who only observes choice

probabilities and aims to estimate the payoffs driving this choice behavior. If the

analyst endorses the IID assumption with respect to these unobserved payoffs, they

must deploy a mixed-logit rule to estimate payoffs from observed choice probabilities,

and for subsequent counterfactual analysis.

This conclusion is robust to changes in the outcome space and, plausibly, to other

features of the model. While we focus on exact adherence to the axioms, real decision-

makers only satisfy them approximately. We believe our framework can be extended

to accommodate such deviations—approximate equality in the definition of IID or

approximate inequality in the definition of monotonicity—to yield approximate mixed

logit.

A more subtle extension would involve restricting the richness of the menu domain,

for instance, by limiting the number of primitive menus used to form product menus.

Our current proof relies on de Finetti’s theorem for infinite exchangeable sequences,

which requires taking products over arbitrarily many copies of the same menu. It

may be possible to adapt the approach to finite exchangeability, following Diaconis

and Freedman (1980). In such a setting, one might hope to recover approximate

representations, with the quality of approximation depending on the sequence length.

We leave these questions for future work.

The richness of our domain of menus may raise the question of whether behav-

ior over such a large domain can be observed by an analyst. Even if we restrict

attention to a finite domain, it would likely need to be large to guarantee a good

approximation—perhaps unrealistically large for being observed in practice. A more

practical view of our results is that the analyst assumes the decision maker could po-

tentially face many menus and would behave consistently with IID. This assumption

pins down the mixed logit rule, which can then be estimated from behavior over a

smaller subset of observed menus.
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G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University

Press, 2nd edition, 1952.

N. Kashaev, C. Gauthier, and V. H. Aguiar. Dynamic and stochastic rational behav-

ior. arXiv preprint arXiv:2302.04417, 2023.
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A Monotonicity of Mixed Logit

Recall that the multinomial logit rule is given by

MNLβ
pa | A, oq “

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq
.

for β P R. We extend this definition to β P t´8,`8u by letting MNL`8 be the rule

in which the decision maker chooses uniformly at random one of the actions with the

highest outcomes. Likewise, MNL´8 is the rule in which the decision maker chooses

uniformly at random one of the actions with the lowest outcomes.

We accordingly extend mixed logit to allow the random parameter β to be chosen

from a distribution µ over the extended reals.

The following lemma shows that in extended mixed logit the distribution of the

random response parameter must be supported on the non-negative extended reals

in order to achieve monotonicity.

Lemma 1. The extended mixed-logit rule with random parameter β „ µ satisfies

monotonicity if and only if it satisfies monotonicity for menus in MZ if and only if

µpr´8, 0qq “ 0.

Proof of Lemma 1. Define, for k “ 1, 2, . . . , pA, okq “ pta, b, cu, p0, 1, kqq, and sup-

pose, for the sake of contradiction, that µpr´8, 0qq ą 0. Then

lim
kÑ8

ΦpA, okqpaq “
1

3
µp0q ` lim

k

ż

r´8,0q

1

1 ` eβ ` eβ¨k
dµpβq

“
1

3
µp0q `

ż

r´8,0q

1

1 ` eβ
dµpβq

ą
1

3
µp0q `

ż

r´8,0q

eβ

1 ` eβ
dµpβq “ lim

kÑ8
ΦpA, okqpbq,

so monotonicity is violated for large enough k. On the other hand, when µpr´8, 0qq “

0, it is clear that MLµ satisfies monotonicity.
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B Proof of Proposition 1

Lemma 2 (See, e.g., Hardy, Littlewood, and Pólya (1952)). If f, g : R Ñ R are

strictly increasing functions and µ is a probability measure then
ş

fg dµ ě
ş

f dµ ¨
ş

g dµ, with equality if and only if µ is a Dirac measure.

Lemma 3. Let pA, oq be a menu, and let

fpβq “
ÿ

aPA

opaq ¨ MNLβ
pa | A, oq.

Then fpβq is increasing in β, and strictly increasing if A is non-trivial.

Proof. Let A “ ta1, ¨ ¨ ¨ , anu and denote ui “ opaiq. Let dpβq “
ř

i e
βui . Then

d1
pβq “

ÿ

i

ui ¨ eβui , d2
pβq “

ÿ

i

u2
i ¨ eβui .

We can rewrite fpβq as

fpβq “
d1pβq

dpβq
,

and

f 1
pβq “ ´

d1pβq2

dpβq2
`

d2pβq

dpβq
“ ´

1

dpβq2
pd1

pβq
2

´ dpβq ¨ d2
pβqq.

By the Cauchy-Schwarz inequality, we have

d1
pβq

2
´ dpβq ¨ d2

pβq “

˜

ÿ

i

ui ¨ eβui

¸2

´

˜

ÿ

i

eβui

¸

¨

˜

ÿ

i

u2
i ¨ eβui

¸

ď 0,

where the equality holds when ui ¨
?
eβui “ b ¨

?
eβui for all i, i.e., when ui is constant.

Proof of Proposition 1. Let pA, oq “ pA1, o1q b pA2, o2q be a product of non-trivial

menus and let

f1pβq “
ÿ

aPA1

o1paq ¨ MNLβ
pa | A1, o1q

and

f2pβq “
ÿ

aPA2

o2paq ¨ MNLβ
pa | A2, o2q.
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It follows that
ÿ

aPA1

ÿ

bPA2

o1paq ¨ o2pbq ¨ MLµ
ppa, bq | A, oq

“
ÿ

aPA1

ÿ

bPA2

o1paq ¨ o2pbq ¨

ż

MNLβ
ppa, bq | A, oq dµpβq

“

ż

ÿ

aPA1

ÿ

bPA2

o1paq ¨ o2pbq ¨ MNLβ
ppa, bq | A, oq dµpβq,

by a change of the order of summation. By the decomposability of MNLβ,

“

ż

ÿ

aPA1

ÿ

bPA2

o1paq ¨ o2pbq ¨ MNLβ
pa | A1, o1q ¨ MNLβ

pb | A2, o2q dµpβq

“

ż

ÿ

aPA1

o1paq ¨ MNLβ
pa | A1, o1q

ÿ

bPA2

o2pbq ¨ MNLβ
pb | A2, o2q dµpβq

“

ż

f1pβqf2pβq dµpβq.

Since f1 and f2 are strictly increasing in β (Lemma 3),

ě

ˆ
ż

f1pβq dµpβq

˙

¨

ˆ
ż

f2pβq dµpβq

˙

“

˜

ÿ

aPA1

o1paq ¨ MLµ
pa | A1, o1q

¸

¨

˜

ÿ

bPA2

o2pbq ¨ MLµ
pb | A2, o2q

¸

.

Moreover, by Lemma 2, the inequality holds with equality if and only if µ is a Dirac

measure.

C Proof of Proposition 2

Lemma 4. Let Lpβq “ MNLβ
pa1 | A, oq and Hpβq “ MNLβ

pan | A, oq, where

A “ ta1, . . . , anu and opa1q ď opa2q ď ¨ ¨ ¨ ď opanq, with at least one inequality

strict. Then ´H2

H 1 ď ´L2

L1 .

Proof. Let oi denote opaiq, and let dpβq “
ř

i e
βoi . Then

d1
pβq “

ÿ

i

oie
βoi ă on ¨ dpβq,

d2
pβq “

ÿ

i

o2i e
βoi ă on ¨ d1

pβq.
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The derivatives of L are given by:

L1
“ ´

d1

d2
ą ´

on ¨ d

d2
“ ´on ¨ L

L2
“

2pd1q2 ´ d2 ¨ d

d3

Without loss of generality, assume opa1q “ 0 so that H “ eβonL. Then

H 1
“ one

βonL ` eβonL1
“ eβonponL ` L1

q

H2
“ o2ne

βonL ` 2one
βonL1

` eβonL2.

Thus, we have:

H2

H 1
´

L2

L1
“

o2nL ` 2onL
1 ` L2

onL ` L1
´

L2

L1

“
o2nL ¨ L1 ` 2onpL1q2 ´ onL ¨ L2

L1ponL ` L1q
.

Since L1 ă 0 and onL ` L1 ą 0, the denominator of the above expression is negative.

Moreover the numerator simplifies to

d2 ´ ond
1

d3
ă 0,

so the overall expression is positive, as desired.

D Proof of Theorem 2

Proof. Let Φ be a monotone, continuous rule on MRn satisfying IID. Let B “

te1, . . . , enu denote the basis of standard unit vectors of Rn. For t “ 1, . . . , n, de-

fine the rule Λt on MR by ΛtpA, oq “ ΦpA, o ¨ etq, where o ¨ et : A Ñ Rn maps a to

opaq ¨ et.

Since Λt satisfies monotonicity, continuity and IID, by Theorem 1, Λt “ MLνt for

some νt supported on R`.

Let pBn`1, un`1q, pBn`2, un`2q, . . . be an enumeration of MZn , the set of all the

menus with outcomes in Zn. Note that MZn is countable, because the set of actions

A is countable. For t “ 1, . . . , n choose

pBt, utq “

"

ℓt
0

ht

et

*

. (14)
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Since pBn`1, un`1q, pBn`2, un`2q, . . . is an enumeration, the menus (14) will appear

twice in pB1, u1q, pB2, u2q, . . ..

Define the sequence of menus pA1, o1q, pA2, o2q, . . . in MZn as follows. Write the

natural numbers N “ N1 Y N2 Y ¨ ¨ ¨ as a disjoint union of infinite sets, and given

i P Nk, set pAi, oiq “ pBk, ukq. Hence, there are infinitely many copies of each pBk, ukq

in the sequence pAi, oiqi. Let Ω “
ś8

i“1Ai. By Proposition 3, there is a unique Ψ

defined onM8
Rn that marginalizes to Φ on each finite product of menus.8 Let P denote

the probability measure on Ω given by Ψp
Â8

i“1pAi, oiqq, and let Xn be the coordinate

projections, i.e., Xnpa1, a2, . . . q “ an, with the tail σ-algebra of pX1, X2, . . . q denoted

by T .

Fix any k ą n. Enumerate Nk “ ti1, i2, . . .u and let

pY1, Y2, Y3, . . .q “ pXi1 , Xi2 , Xi3 , . . .q.

For t “ 1, . . . , n, let Nt “ tjt1, j
t
2, . . .u. Let

pZt
1, Z

t
2, Z

t
3, . . .q “ pXjt1

, Xjt2
, Xjt3

, . . .q,

Hence Yi corresponds to the choice in the ith copy of Bk and Zt
i to the ith copy of

Bt, as defined in (14).

By Proposition 3 we know that pY1, Y2, . . .q are exchangeable, as are pZt
1, Z

t
2, . . .q.

It therefore follows by De Finetti (Theorem 3) that there are tail-measurable random

distributions F,G1, . . . , Gn, where F is a distribution over Bk and Gt is a distribution

over Bt “ tℓt, htu, and such that conditioned on the tail we have that pX1, X2, . . .q

are independent, with Yi chosen from F , and Zt
i chosen from Gt, so that

F pbkq “ PrYi “ bk | T s and Gtpbtq “ PrZt
i “ bt | T s, for any i. (15)

The distributions F,G1, . . . , Gn are therefore the (random) empirical distributions of

the actions, i.e.,

F pbkq “ lim
n

1

n

n
ÿ

i“1

1Yi“bk and Gtpbtq “ lim
n

1

n

n
ÿ

i“1

1Zt
i “bt a.s.

Denote by β the n-dimensional random variable with coordinates

βt “ log
Gtphtq

Gtpℓtq
,

8Formally, Proposition 3 is stated for MR, but the exact same proof applies to MRn .
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and note that β takes values in r´8,`8sn. Let µ be the distribution of β and µt be

the marginal distribution of βt.

We claim that ΦpBk, ukq is equal to MLµ
pBk, ukq. To this end, choose any a, a1 P

Bk, let dt denote the t-th coordinate of ukpaq ´ ukpa1q, and let d`
t “ maxtdt, 0u and

d´
t “ maxt´dt, 0u. By (15), Yi and Z1

i , . . . , Z
t
i are independent conditioned on the

tail. By the same argument used in the proof of Proposition 4 we conclude that

F paq ¨ G1pℓ1q
d`
1 ¨ ¨ ¨Gnpℓnq

d`
n ¨ G1ph1q

d´
1 ¨ ¨ ¨Gnphnq

d´
n

“ F pa1
q ¨ G1pℓ1q

d´
1 ¨ ¨ ¨Gnpℓnq

d´
n ¨ G1ph1q

d`
1 ¨ ¨ ¨Gnphnq

d`
n almost surely. (16)

Let Rt denote the one-dimensional vector space spanned by et. Note that for

pBk, ukq P MRt , d
`
i “ d´

i “ 0 for all i ‰ t. Hence, in this case we have

F paq

F pa1q
“ eβtputpaq´utpa1qq

“
eβtutpaq

eβtutpa1q
,

and we may conclude that Λt|MZ “ MLµt |MZ . Thus, by Proposition 5, µt “ νt, so the

support of µt is contained in R`. Thus, β is finite (and F is non-degenerate) almost

surely. For any pBk, ukq it follows from (16) that

F paq

F pa1q
“ eβ¨pukpaq´ukpa1qq

“
eβ¨ukpaq

eβ¨ukpa1q
.

We have thus shown that F “ MNLβ
pBk, ukq, and so

Φpa | Bk, ukq “ PrYi “ as “ ErF paqs “ ErMNLβ
pa | Bk, ukqs “ MLµ

pa | Bk, ukq.

We now show that Φ|MQn “ MLµ
|MQn . As in the proof of Theorem 1, we define,

for k “ 1, 2, . . . ,

Φk
pA, oq “ Φ

ˆ

A,
1

k
¨ o

˙

.

Since each of these rules satisfy monotonicity and IID they are mixed-logit rules.

We now show that their mixing measures must be k´1
˚ µ by proving an analogue of

Proposition 5 for multidimensional mixed-logit rules.

Given γ P Rn
`` and m P N, define the menus pCm, o

m
1 q, . . . , pCm, o

m
n q in MZn by

Cm “ pa1, . . . , am, bq, o
m
t pakq “ 0, and omt pbq “ t

lnpmq

γt
u ¨ et, for t “ 1, . . . , n. Let

pAm, omq “ pCm, o
m
1 q b ¨ ¨ ¨ b pCm, o

m
n q. Then
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lim
m

MNLβ
ppb, . . . , bq | Am, omq “

$

&

%

0 if βt ă γt for some t

1
2k

if β ě γ and |tt : βt “ γtu| “ k.

Thus µ is identified by MLµ restricted to MZn .

For pA, oq P MQn , there is a positive integer k such that pA, k ¨ oq P MZn . Thus,

ΦpA, oq “ Φk
pA, k ¨ oq “ MLµkpA, k ¨ oq “ MLµ

pA, oq.

Thus, Φ|MQn “ MLµ
|MQn . Fix any menu pA, oq and a P A. For n “ 1, 2, . . .,

define ōn : A Ñ Qn by ōnpaq “ 1
n

rn ¨ opaqs. Since ōnpaq Ñ opaq, by continuity, we

have ΦpA, oq “ limnÑ8 ΦpA, ōnq. Hence, Φ is uniquely determined by Φ|MQn . Since

Φ|MQn “ MLµ
|MQn , and since MLµ is continuous, it follows that Φ “ MLµ.

In some natural applications of stochastic choice, outcomes are limited to a subset

of Euclidean space, such as the positive orthant (see, e.g., §6.2 and §6.3). Our char-

acterization still applies, provided the outcome space is rich enough. Indeed, as the

following corollary shows, a stochastic choice rule defined for menus with outcomes in

a convex cone that satisfies the axioms can be extended to a rule on Rn that satisfies

the axioms.

Corollary 2. Let C Ď Rn be a full-dimensional convex cone, and let Φ be a stochastic

choice rule on MC that satisfies monotonicity, continuity, and IID. Then Φ “ MLµ

for some µ supported on Rn
`.

Proof. Let C and Φ as in the corollary. Define Ψ on MRn by ΨpA, oq “ ΦpA, o ` cq,

where c P C is such that opaq ` c P C for all a P A. Note that, by IID, Ψ is

well-defined, since any such c leads to the same distribution ΨpA, oq. It is obvious

that Ψ is monotone. Ψ is moreover continuous as c may be chosen continuously.

Finally, for ΨpA1, o1q “ ΦpA1, o1 ` c1q and ΨpA2, o2q “ ΦpA2, o2 ` c2q and pA, oq “

pA1, o1q b pA2, o2q, we have

Ψpa1 | A, oq “ Φpa1 | A, o ` c1 ` c2q “ Φpa1 | A1, o1 ` c1q “ Ψpa1 | A1, o1q,

for all a1 P A1. Thus Ψ satisfies IID and is a mixed-logit rule. Since Ψ agrees with Φ

on C, Φ is a mixed-logit rule.
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