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Abstract

We study agents playing a pure coordination game on a large social network. Agents
are restricted to coordinate locally, without access to a global communication device,
and so different regions of the network will converge to different actions, precluding
perfect coordination. We show that the extent of this inefficiency depends on the
network geometry: on some networks, near-perfect efficiency is achievable, while on
others welfare is strictly bounded away from the optimum. We provide a geometric
condition on the network structure that characterizes when near-efficiency is attainable.
On networks in which it is unattainable, our results more generally preclude high
correlations between outcomes in a large spectrum of dynamic games.

1 Introduction

Pure coordination problems involve a decision between alternatives that are a priori
equivalent, and where the only motivation is to match the choices of others. For example,
the choice of a weekly day of rest has obvious coordination incentives, and one can plausibly
assume that a priori it does not matter which day of the week it is, assuming everyone
chooses the same one. Other examples include the choice of outlet plug standard, the side
of the street to drive on, and the term used to describe a new concept or object.

We consider agents who have to coordinate with their social network neighbors. When
the network is large and coordination is local, one cannot hope that the entire population
will make the same choice, and so inefficiencies must arise. The question we ask is: on which
social networks is it possible to achieve low inefficiency? In particular, what geometric
property of the network determines the range of possible outcomes?
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We show that low inefficiency is very closely tied to the amenability of the social
network graph.1 This is a well-studied graph property, which roughly means that the
graph can be divided into distinct communities, each of which has relatively few edges
to other communities. We show that on amenable graphs agents can coordinate well in
equilibrium (Theorems 1, 2 and 3). On non-amenable graphs, we show that near-efficient
coordination is impossible (Theorem 4). Indeed, we show that it is impossible not just in
equilibrium, but in any strategy profile.

We consider a setting in which agents can communicate locally: there is some radius of
communication r, and agents can exchange messages with their neighbors, neighbors of
neighbors, etc, up to distance r. This can be viewed as a reduced form model that can
capture the end state of a more detailed process, perhaps involving multiple rounds of
communication with direct neighbors, which allows messages to travel some distance.

Messages can be either (locally) public, in which case they are observed by all agents
up to distance r (e.g., posting a yard sign) or private. On amenable graphs, this suffices
for the existence of equilibria with low inefficiency (Theorem 1). Eliminating private
communication still allows for low inefficiency, but with some loss (Theorem 2).

In non-amenable graphs, inefficiency is high, even when private communication is
allowed, and indeed even when incentives are not a constraint. Our general result in this
setting (Theorem 5) is thus also a contribution to the study of stochastic processes on
non-amenable graphs, which is an active area of research. This result also has a distributed
computing interpretation: no distributed algorithm running on the nodes of a graph using
local information can yield highly correlated outputs when the graph is non-amenable.

The low-inefficiency equilibria we construct on amenable graphs have a simple structure:
agents are divided into communities, each community has a leader, and each leader messages
the community with instructions determining the action they coordinate on. We call such
an equilibrium a leader equilibrium. When communities are insular there are no incentive
issues. However, when agents have neighbors who are members of a different community
one has to make sure they have no incentive to deviate and follow the other leader’s
instructions. This issue can be solved by private communication between leaders and their
communities (Theorem 1). When private communication is not allowed, these issues can be
overcome by a careful construction of communities that are sufficiently insular (Theorem 2).
These results show that on amenable graphs there are efficient leader equilibria. The
converse is also true: the existence of an efficient leader equilibrium implies that the graph
is amenable.

We show that inefficiency must be high on non-amenable graphs, and not just in leader
1The term hyperfiniteness is often used to describe this property in the math literature; see more in the

related literature discussion.
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equilibria. To this end, we demonstrate that given any low-inefficiency strategy profile
one can construct a leader equilibrium that also has low inefficiency. This shows that this
simple coordination device is (almost) as powerful as any other.

The main technical tool we use to prove this result is what we call the Shapley influence
distribution (Owen, 2014; Owen and Prieur, 2017): a measure of how much a variable affects
the outcome of a function that depends on several independent inputs. This distribution
is given by the Shapley values of a cooperative game played by the input variables that
determine the function’s output. We show that the Shapley influence distribution has
a strong contraction property: when applied to two similar functions, it yields similar
distributions.

In any equilibrium (or indeed, in any strategy profile) we can view a player’s action as
a function of the independent inputs given by the messages of the players within the radius
of communication. We apply the Shapley influence distribution to this function to yield,
for that player, a distribution over the players around them. This will be the distribution
used by this player to choose a leader. Intuitively, this means that in the constructed
leader equilibrium players are more likely to choose as leaders those in their neighborhood
that are more influential to their decisions. The contraction property we prove ensures
that agents tend to choose the same leaders as their neighbors, ensuring low inefficiency.

Related literature. The study of coordination has a long history in economics and
game theory, including in both cooperative and non-cooperative game theory; a complete
survey is beyond the scope of this paper. Coordination on social networks has also been
the subject of a number of paper. Perhaps the closest to ours is Morris (2000), who studies
contagion in a two-action, repeated local interaction model. Agents live on an infinite graph
and repeatedly best-respond to their neighbors’ actions, myopically maximizing payoffs
in a coordination game. The question is: starting from a finite region in which all agents
play one action, when will best responses eventually make that action spread to the entire
graph? A key message is that this depends on the graph’s geometry: slow neighborhood
growth supports contagion, reflecting the amenability intuition that communities should
have relatively small boundaries for efficient coordination.

Earlier, Ellison (1993) studied a similar two-action coordination problem, but in a large
finite population under a noisy best-response dynamics. He highlights that coordination
outcomes depend on the interaction structure. When coordination is local, the agents
converge quickly to the same action, whereas under uniform interactions convergence is
extremely slow. A number of other papers follow a similar path; see Weidenholzer (2010)
for a survey of best-response type models of coordination dynamics. This literature is
closely tied to the study of interacting particle systems in probability, which originated
with the classical Ising model (Ising, 1925) and is very active to this day (see, e.g., a survey
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by Durrett, 2025). Both Morris (2000) and Ellison (1993) focus on the long-term outcomes,
after repeated interactions have percolated throughout the network, rather than the local
interactions we are interested in.

More recent contributions to the coordination on networks literature include Sadler
(2020), who analyzes diffusion from a seed, where global spread depends on whether adoption
opportunities percolate through a giant connected cluster, captured by a branching-factor
condition. Chwe (2000) shows that in a collective action setting, coordination hinges on
the network’s ability to generate sufficiently strong higher-order beliefs, via a hierarchical
communication structure. In his geometric threshold model, dense local overlap facilitates
coordination in low-dimensional networks, while weak ties become important mainly once
the network is very dense. Pęski (2025) studies random-threshold coordination and shows
that in large networks equilibria admit a simple cutoff structure. Its existence is guaranteed
under a small influence condition, where each agent’s payoff is not driven by any single
neighbor.

Beyond coordination, there is a very large literature that studies how the geometry of the
social network affects outcomes in various strategic settings. A very partial list of examples
includes Jackson and Yariv (2007), who study how network structure affects the diffusion
of behavior; Ballester et al. (2006) and Bramoullé et al. (2014), who consider quadratic
games with linear best-responses, and show that spectral properties of the adjacency matrix
determine equilibrium behavior; and Golub and Jackson (2012), Acemoglu et al. (2011)
and Mossel et al. (2015), who study how network geometry affects social learning outcomes.

Several inequivalent notions of amenability have appeared in the mathematics literature.
The notion we use is equivalent to so-called hyperfiniteness as introduced by Elek (2006);
see also Schramm (2008). This notion of (non)amenability could also reasonably be
referred to as statistical (non)amenability as it concerns a property of graphs determined
by the average geometry at a random vertex and is robust to the presence of rare outlying
regions with atypical geometry. This notion of amenability has been studied extensively
by mathematicians in the setting of unimodular random rooted graphs (Aldous and Lyons,
2007) and measured equivalence relations (Kechris and Miller, 2004), the latter being a
central topic in modern descriptive set theory.

The concept of amenability was first introduced by von Neumann (1929), who originally
defined it as a property of groups, with the goal of understanding the origins of the
Banach-Tarski paradox. Classically, a graph is said to be amenable if it contains finite sets
of vertices with arbitrarily small surface-to-volume ratio; for groups, being amenable in the
sense of von Neumann is equivalent to having Cayley graphs that are amenable in this sense.
Finite graphs are always amenable in this sense since the entire vertex set has no boundary.
The most classical non-vacuous notion of non-amenability in the finite context is that of
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being an expander graph: Given ε > 0, a finite graph is said to be an ε-expander if every
set containing at most half the vertices has surface-to-volume ratio at least ε. Such finite
expander graphs have many applications in computer science and algorithm design (see, e.g.,
Hoory et al., 2006). Being an expander graph might reasonably be referred to as uniform
non-amenability in contrast to our statistical notion, and is a strictly stronger property
than being non-amenable in our sense. For example, the giant cluster of a random graph
on n vertices with average degree d > 1 is not an expander with high probability when n is
large due to the presence of rare “bad regions”, but is non-amenable in our statistical sense.
The same is true for many “small-world” models of social networks (Watts and Strogatz,
1998), making our (statistical) notion of non-amenability the more relevant concept in
many applications. The two notions are equivalent for transitive graphs (Benjamini et al.,
1999), that is, graphs in which any two vertices are related by a symmetry. Analogues
of our main probabilistic theorem (Theorem 5) for transitive graphs have been proven
using spectral methods in e.g. Backhausz and Virág (2017) and Hutchcroft (2023), but
these proof methods do not apply under our notion of (statistical) non-amenability. Csóka,
Harangi, and Virág (2020) prove a version of this theorem for general (non-transitive)
graphs, under a uniform non-amenability assumption (see Remark 2).

2 Model

Let N be a finite set of agents. The agents are connected by a social network whose graph
is G = (N, E), where (i, j) ∈ E ⊆ N × N signifies that i is a neighbor of j. We assume
that the graph is undirected, i.e., (i, j) ∈ E if and only if (j, i) ∈ E. By convention, we set
(i, i) ̸∈ E. We denote the neighborhood of i ∈ N by Ni = {j : (i, j) ∈ E}. The degree of
agent i is the size of Ni, and we denote by dmax the maximum degree of all agents. We
think of dmax as being small: each agent has many fewer neighbors than there are agents
in the network.

We say that i is connected to j if there is a sequence of agents starting in i and ending
in j such that each subsequent pair are in each other’s neighborhood. The connected
component of i is the set of agents to whom i is connected. We denote by Br(i) ⊆ N the
set of agents who are at distance at most r from i in the social network. I.e., the agents to
whom i is connected by a sequence of agents of length at most r. We refer to this set as
the i’s r-neighborhood.

Each agent has to choose an action in A = {−1, +1}. The utility of player i for an
action profile a ∈ AN is given by

ui(a) = −
∑

j∈Ni

|ai − aj |. (1)
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This is a pure coordination game in which each agent wants to match its neighbors,
receiving a payoff of 0 for each match and a payoff of −2 for each mismatch. All of our
results extend to similar coordination games with more actions; we opt to focus on the two
action case for simplicity of notation and exposition.

We would like to capture the idea that in order to coordinate, agents can communicate
locally and pass information among themselves, but that information cannot travel too far
in the network. To this end, we allow for two rounds of local communication, after which
agents choose their actions.

In the first round, each agent i can choose a message mi to broadcast to all agents
in Br(i). We call this message agent i’s locally public message, as the same message is
observed by all the agents in the i’s r-neighborhood. This element of our model can
capture a public action, such as posting a sign on one’s yard. It can also be a reduced form
approach to modeling a more complicated processes, e.g., one in which some message from
agent i is communicated to the agents in Br(i) through chains of exchanges between direct
neighbors.

For some of our results we will require an additional, private (but still local) communi-
cation stage. After receiving the locally public messages of the agents in Br(i), agent i

can send each agent j ∈ Br(i) an additional private message m̂i,j . As with locally public
messages, private messages sent directly to agents within distance r can succinctly model
a more complicated process.

Messages, both locally public and private, take values in a set of messages M. The set
M will be large (uncountable), placing no restriction on the complexity of the message.
For reasons that will become clear soon, we put a particular structure on M. Let A be a
finite alphabet that includes the two actions {−1, +1} as letters, as well as the letter ∅.
Let M = AN, so that a message is an infinite string written using the alphabet A. Given
a letter α ∈ A, we identify the string (α, ∅, ∅, . . .) with α itself. In particular, (−1, ∅, ∅, . . .)
is the message −1, and likewise (+1, ∅, ∅, . . .) is the message +1. The message (∅, ∅, . . .) is
the message ∅, which we call the empty message.

After sending and receiving the private messages, agent i chooses an action ai ∈
{−1, +1} and receives a payoff according to (1). Formally, there are five periods, in which
each agent i

1. sends a locally public message mi;

2. learns the locally public messages mBr(i) = (mj)j∈Br(i);

3. sends a private message m̂i,j to each j ∈ Br(i);

4. learns the private messages m̂j,i for all j ∈ Br(i);
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5. chooses an action ai.

This defines an extensive form game. The information available to agent i at the end of
stage 2 consists of the locally public messages of the agents in Br(i). At the end of stage 4,
agents also know the private messages they received and sent. Thus, a pure strategy of an
agent is a tuple σi = (mi, ni, oi), where mi is the locally public message, ni is a measurable
map that assigns to every realization of mBr(i) the private messages (m̂i,j)j∈Br(i), and oi is
a measurable map that assigns to every realization of (mBr(i), (m̂i,j)j∈Br(i), (m̂j,i)j∈Br(i))
an action in {−1, +1}. We use the same notation to denote mixed profiles, in which case
(mi, ni, oi)i∈N will be independent random variables, all defined on the same probability
space. Within this probability space, we will denote by ai the (random) action taken by i.

We will be interested in mixed equilibria of this game. In particular, we will be
interested in the average welfare of this game, i.e., in

W = − 1
|E|

∑
(i,j)∈E

|ai − aj |.

This is the payoff averaged over all ordered pairs (i, j) of agents who are neighbors. It will
be more convenient to study the average inefficiency

I = −W = 2
|E|

∑
(i,j)∈E

1ai ̸=aj
,

that is, twice the fraction of pairs of neighbors that mismatch. This is equal to 0 if all
agents coordinate, and to 2 if all agents miscoordinate.

For any graph, there are two equilibria that achieve first-best: the one in which agents
ignore all information and all choose the action +1, and another in which they all choose
−1. We are interested in how agents might coordinate, rather than in the fact that these
are stable courses of action; assuming that agents play one of these equilibria relegates the
question of coordination on actions to that of coordination on equilibria. Instead, we would
like to model a setting in which the agents need to interact and exchange information in
order to coordinate.

To this end, we will define action-symmetric strategy profiles, which are invariant to
renaming the actions. Playing an action-symmetric strategy captures an a priori indifference
to the two actions, making coordination an interesting problem. We will not restrict players
to play action-symmetric strategies, but instead study equilibria in which players have no
incentive to deviate away from action-symmetry.

In a one-shot game without communication in which agents only choose an action,
the only action-symmetric equilibrium is the one in which all agents choose each action
with probability one half. Indeed, this is the only action-symmetric strategy profile. In
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the extensive form game with communication, agents can use messages to break ties and
coordinate without a prior preference to either action.

Formally, we define the negation operator on the message alphabet A by having it
map −1 to +1 and vice versa, and mapping each other letter to itself. This operator is
extended in the obvious way to the set of messages M = AN, so that the negation of
m = (α1, α2, . . .) ∈ M is −m = (−α1, −α2, . . .) ∈ M. A tuple of messages (e.g., a message
received from each neighbor) is negated in the same way.

Let X , Y be spaces on which negation is defined (e.g., {−1, +1}, A, M, Br(i)M). Let
f : X → Y be a function (e.g., ni or oi). We define the function ι(f) : X → Y by
[ι(f)](x) = −f(−x). For example, suppose X = Y = {−1, +1, ∅}, in which case we can
think of f as a map that chooses a message to be sent as a function of a received message.
If f is the constant +1, then ι(f) is the constant −1. More generally, if f(∅) = +1 then
[ι(f)](∅) = −1. If f(α) = α then ι(f) = f , and likewise if f(α) = −α then ι(f) = f .

Given a pure strategy σi = (mi, ni, oi), we define ι(σi) = (−mi, ι(ni), ι(oi)). We say
that i’s mixed strategy is action-symmetric if it is ι-invariant: σi has the same distribution
as ι(σi). Equivalently, if we denote by Ai the set of strategies of i, then ι is a bijection
from Ai to Ai, and a probability measure µi over Ai (i.e., a mixed strategy for player i) is
action-symmetric if for any measurable E ⊆ Ai it holds that µi(E) = µi(ι(E)). Intuitively,
action-symmetry is invariance to the renaming of the two actions, capturing the notion
that players are agnostic to the actions’ names.

Note that if all players use action-symmetric strategies, then the probability that ai = 1
is one-half for all players i. In fact, this would suffice as an assumption for all our results:
namely, we can replace the action-symmetry assumption with the assumption that strategy
profiles are such that each agent takes each action with probability one half.

Coordination is possible even when all players use action-symmetric strategies. For
a simple example, suppose that r is equal to the diameter of the graph (i.e., j ∈ Br(i)
for all i, j ∈ N), so that every player can communicate with every player. Then there is
an equilibrium in which players coordinate perfectly: fix a player ℓ ∈ N whom we call
the “leader”. The leader chooses a locally public message mℓ uniformly from {−1, +1}.
The players then choose to follow the leader ℓ, by taking the action ai = mℓ. Thus, our
communication structure allows for perfect coordination when r is large enough. The
question becomes more interesting when r is much smaller than the extent of the graph.

Regardless of the graph, there is always an equilibrium in which the agents ignore all
information and choose ai uniformly at random. In this case, the expected inefficiency will
be high (it will, in fact, be equal to one). The main question of this paper is the following:
Given ε > 0 and a radius of communication r, for which graphs is there an equilibrium
that achieves expected inefficiency at most ε?
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2.1 Amenable graphs

The answer to this question turns out to be closely related to a property of graphs called
amenability. In this section we initially discuss amenability of infinite graphs, where it is
simpler to define, before returning our focus to finite graphs.

To explain this idea, we first consider our game on the line graph, where N = Z and
j ∈ Ni if |i − j| = 1 (see Figure 1). We fix some large radius of communication r. Notice
that it is impossible to achieve perfect coordination: if i and j are more than 2r apart, their
actions must be statistically independent of each other in any action-symmetric profile,
and so it is impossible that all agents take the same action. Nevertheless, it is possible to
achieve low inefficiency.

· · · · · ·
0 1 2 c c+1 c+2 2c 2c+1

C1 C2

Figure 1: Z, amenable. Communities have length c = 2r + 1. Miscoordination
occurs only along the red edges, which form a small fraction of the edges.

To this end, we divide the line into communities of length c = 2r + 1: C1 = {1, . . . , c},
C2 = {c + 1, . . . , 2c}, etc. The leader of Ck will be ℓk = k(2r + 1) − r, the agent in the
middle of the interval who is within the distance r to all agents in Ck. This agent will send
the same private message to the entire community and will take the action equal to this
message. The agents who are not leaders will send empty messages and will choose the
action equal to their leader’s message.

Agents who are within the same community will choose the same action, and so
miscoordination will only occur on the boundary of the communities. This is an equilibrium:
agents who are not on the boundary will lose payoff if they deviate, as both of their neighbors
will take the same recommended action. Agents who are on the boundary of a community
likewise will face a lower expected payoff from deviating, since they know which action
their community neighbor will take but do not know which action will be taken by their
neighbor across the community border.

Since miscoordination occurs only on the community borders, and since there it occurs
with probability one half, the inefficiency will be 2/(2c) = 1/(2r + 1). In particular, when
r is large, the inefficiency is small. Clearly, on a finite graph that within radius r looks like
this graph (i.e., a cycle of length much longer than r) the same conclusion applies, with
low inefficiency for large r.

A similar equilibrium can be constructed on the two dimensional grid (see Figure 2).
Here, the communities will be (r + 1) × (r + 1) squares, and so having radius r (the radius
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of a connected component is the minimum r such that the entire component is contained
in the ball of radius r of some member of the component), and again inefficiency will be
small when r is large (this time 1/(r + 1), so again of order 1/r). As with the line, the
same conclusion applies to finite graphs that locally look like the grid.

(1,1)

(2r + 2,2r + 2)

(2r + 2,1)

(1,2r + 2)

C1

C2

C3

C4

Figure 2: Z2, amenable. Communities are (r+1)×(r+1) squares. Miscoordination
occurs only along the red edges, which, as on the line, form a small fraction of
the edges.

Both of these constructions rely on a geometric property of these graphs: namely, that
they can be partitioned into communities in such a way that each community has a small
boundary as compared to the number of agents it contains. This is not possible on every
graph. For example, consider the (infinite) binary tree (see Figure 3). Here, if we choose
as a community, say, the first ten levels, then more than half of the agents will be on the
boundary of the community, and so inefficiency will be high. This holds if we choose the
community to consist of any number of levels. In fact, this holds for any finite community
on this graph: the number of edges between members of the community and members
outside the community will be at least the size of the community. Thus, on a finite graph
that locally looks like this tree, there cannot be efficient leader equilibria, regardless of
how large r is.2

In infinite graphs, the existence of finite communities with small boundaries is captured
by the definition of an amenable graph. Formally, let G = (N, E) be a graph, and assume

2An example of a finite graph that locally looks like a tree is an (n, d/n)-Erdős-Rényi graph for d > 0,
which, for large n, with high probability looks like a tree within an r-neighborhood of almost all vertices.
More formally, if Gn = (N, E) is chosen from this measure over graphs of n vertices, and if i is a uniformly
chosen vertex, then the probability that i is in a cycle of length at most r tends to zero as n tends to
infinity. The graph will locally look like a Galton-Watson tree, rather than a binary tree.
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Figure 3: Binary tree, non-amenable.

that N is countable and each neighborhood Ni is finite. We write Pf (N) for the family of
finite subsets of N . For F ∈ Pf (N) define its boundary

∂F = { (i, j) ∈ E : i ∈ F, j /∈ F },

i.e., the edges that cross from F to outside of F . The surface-to-volume ratio of F is
|∂F |
|F | . The graph G is said to be amenable if it has finite sets with an arbitrarily small

surface-to-volume ratio:

inf
F ∈Pf (N)

|∂F |
|F |

= 0.

The infinite line and infinite grid are amenable, whereas the infinite binary tree is not.
In our model graphs are finite, and so we will need a finer definition, as all finite

graphs are amenable.3 Rather than just requiring the existence of communities with low
surface-to-volume ratio, this definition will require a partition of the graph into such sets, so
that almost all agents must be members of such communities. We will also need these sets
to have radius at most r, so that agents can coordinate actions within their communities;
we say that C ⊆ N has radius r if there is an agent i ∈ C such that C is a subset of Br(i).

Definition 1. A finite graph G = (N, E) is (ε, r)-amenable if there exists a partition
of N into connected components of radius at most r such that the total number of edges
connecting nodes in different components is at most ε|E|.

Equivalently, there is a set of edges D ⊆ E such that |D| ≤ ε|E|, and for each i ∈ N

the connected component of i in G′ = (N, E \ D) has radius at most r.4 That is, one can
remove a small number of connections so that the remaining graph is separated into small
communities. Note that while some of these communities may have a large surface-to-
volume ratio, it is impossible for these communities to contain many agents, since there

3Let F = V . Then ∂F is the empty set, and so |∂F |/|F | = 0.
4An alternative, equivalent definition is to partition the graph into subsets that are not necessarily

connected.
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are at most ε|E| edges in the union of all boundaries. Indeed, the average surface-to-
volume ratio (weighted by population size) is precisely |D|/|N |, which is at most ε|E|/|N |.
Assuming each agent is connected to a small number of others, this means that when ε is
small, almost all agents will be in connected components that have small surface-to-volume
ratios.5 In the math literature, this property is often called hyperfiniteness rather than
amenability. A perhaps more appropriate name is statistical amenability, as it requires
that almost all nodes be the members of a set with a small surface-to-volume ratio, rather
than just the existence of such sets, as in the original definition of amenability for infinite
graphs.

It is easy to see that for any ε > 0, every cycle graph will be (ε, r)-amenable, assuming
r is large enough. The same holds for an n-by-n two dimensional grid. An interesting class
of finite graphs which are amenable for non-obvious reasons are the bounded degree finite
planar graphs6, which are amenable by a theorem of Lipton and Tarjan (1977, 1979) in
the following sense: for every maximal degree dmax and ε > 0 there is an r such that every
planar graph is (ε, r)-amenable. This holds more generally for bounded degree graphs with
any excluded minor (Alon, Seymour, and Thomas, 1990). An example of a non-amenable
graph is an Erdö-Rényi graph, in which each pair of agents are connected by an edge at
random, independently and with some probability p. In particular, fixing the expected
degree d = np > 1, there is an ε > 0 such that for any r the probability that the graph is
(ε, r)-amenable tends to zero as the number of agents n tends to infinity. These graphs
locally look like trees, which is impossible for a finite planar graph.

3 Coordination on amenable graphs

Our first main result shows that when a graph is (ε, r)-amenable, we can find an equilibrium
in which agents coordinate well. These equilibria will be leader equilibria, which we
informally described above.

Fix G = (N, E) and a partition of N into communities {C1, C2, . . .} of radius at most
r. In each community Ck we choose a leader ℓk such that Ck is contained in Br(ℓk); the
existence of ℓk follows immediately from the fact that Ck has radius at most r.

In a leader equilibrium, agents do not use public messages, and so we set mi = ∅ for
all i. Each leader ℓk of Ck sends an empty message m̂ℓk,j to each j ∈ Br(ℓk) who is not
in their community. To the members of their community, leaders send the same private
message, chosen uniformly from {−1, +1}. I.e., if i, j ∈ Ck, then m̂ℓk,i = m̂ℓk,j ∈ {−1, +1}.
Non-leaders send empty messages. Finally, upon observing m̂ℓk,i, each agent i ∈ Ck chooses

5Formally, if G is (ε, r)-amenable, then at most a
√

2εdmax-fraction of the agents will be in connected
components with surface-to-volume ratio greater than

√
2εdmax.

6A graph is planar if it can be drawn on the plane without any of its edges intersecting.
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ai = m̂ℓk,i.
Off path, any private message that does not come from one’s leader or is not in {−1, +1}

is ignored. If an agent does not receive a private message in {−1, +1} from their leader,
they choose an action uniformly at random.7

This strategy profile is action-symmetric. It is straightforward to verify that it is
an equilibrium. First, a leader has no incentive to deviate: since they are a member
of their own community, adhering to the equilibrium guarantees coordination with all
neighbors inside that community. Even for a leader with neighbors in another community,
sending non-empty messages to neighbors outside the community cannot improve payoffs
because such messages are ignored by those neighbors under the prescribed behavior.
Moreover, since leaders do not observe the private messages other leaders sent to their
communities, they cannot hope to coordinate with neighbors from outside their community
with probability greater than one half, which they already achieve in this equilibrium. The
same holds for non-leaders: following the leader guarantees coordinating with members of
their community, while coordinating with members of other communities is impossible to
achieve with probability more than one half, since leaders only send messages to their own
communities. Finally, non-leaders have no incentive to send non-empty messages, since
these are ignored.

Note that implementing these equilibria with public messages would not be possible
in general graphs. Indeed, consider the strategy profile in which each leader ℓk chooses
uniformly at random a public message mℓk

∈ {−1, +1}, and all agents in i ∈ Ck take
the action ai = mℓk

. Suppose also that the graph is such that there is an agent i in a
community C that has more neighbors in a different community C ′ than in C, and who
is also within the radius of communication of ℓ′, the leader of C ′. Then i would have a
profitable deviation of choosing ai = mℓ′ . Since all we know about the graph is that it is
(ε, r)-amenable, we cannot exclude in general the existence of such an agent i, and so we
revert to private communication to maintain incentives.

Note also that implementing a leader equilibrium does not require that the communities
Ck be connected. Nevertheless, since our communication model is a reduced form of a
more detailed process in which only direct neighbors communicate, it is nice to have each
Ck connected. As we note above, the definition of (ε, r)-amenability is equivalent to one in
which we do not require the communities to be connected.

We use leader equilibria to show our first main result.

Theorem 1. Suppose G is (ε, r)-amenable. Then there exists an action-symmetric leader
equilibrium with radius of communication r and expected inefficiency at most ε.

7We do not address subgame perfection in this paper. Nevertheless, we believe that, under appropriate
definitions, these equilibria can be made sequential.
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Thus, if we think of ε as very small, we have that on graphs that are very amenable,
agents can coordinate very well. Note, that the converse of the theorem statement also
holds: if G admits a leader equilibrium with inefficiency at most ε, the set of edges D that
connects members of distinct communities witnesses the (ε, r)-amenability of G. Of course,
this result does not preclude the existence of equilibria that are more efficient than leader
equilibria.

Proof of Theorem 1. Suppose G = (N, E) is (ε, r)-amenable. Then there is a set of edges
D ⊆ E such that |D| ≤ ε|E| and each connected component of (N, E \ D) is of radius at
most r. Denote by {C1, C2, . . .} the connected components of the graph, which form a
partition of N .

Consider a leader equilibrium associated with this partition. In this equilibrium,
members of the same community coordinate perfectly, and members of different communities
coordinate with probability one half. Since neighboring members of different communities
must be connected by an edge in D, the total expected inefficiency is at most |D|, and
thus the average expected inefficiency is at most |D|/|E| ≤ ε.

3.1 Equilibria without private communication

Theorem 1 shows that on amenable graphs there are leader equilibria that achieve low
inefficiency. These equilibria make critical use of the private communication phase and,
in particular, hinge on having the leader discriminately communicate to their community
only. In light of this, one may wonder what could nevertheless be achieved without private
communication, using only locally public messages (mi)i to coordinate. We say that a
strategy profile is no-private-communication if m̂i,j = ∅ for all i, j.

Our main result of this section is that without private communication there still
exist low-inefficiency leader equilibria on amenable graphs, although with slightly worse
guarantees.

Theorem 2. Suppose G is (ε, r)-amenable. Then there exists a no-private-communication,
action-symmetric leader equilibrium with radius of communication r and expected ineffi-
ciency at most εdmax.

The main idea behind this proof is the notion of stable communities. We say that a
community C ⊆ N is stable if for all i ∈ C it holds that |Ni ∩ C| ≥ |Ni \ C|. That is, each
agent in C has at least as many neighbors in C as outside of C. The advantage of a stable
community is that an agent in a stable community does not have an incentive to deviate
from the community’s coordinated action, even if they know what their neighbors from
outside the community will do.
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Suppose that (C1, C2, . . . , CK) are disjoint stable communities, and let U = N \ ∪kCk

be the agents who are not members of any of these communities, so that (C1, C2, . . . , CK , U)
is a partition of N . The leader ℓk of each stable community will send a public message
mℓk

chosen uniformly from {−1, +1}. Non-leaders, as well as members of U , will send an
empty public message. Members of stable communities will follow their leader’s message.
We do not specify explicitly what members of U do, and instead show in the proof that
there exist action-symmetric strategies for these agents that make this an equilibrium. Its
inefficiency will be at most the size of the set of edges

D = (∪k∂Ck)
⋃

{(i, j) : i ∈ U, j ∈ Ni},

since miscoordination can only occur on community boundaries, or outside the communities
on edges adjacent to U .

Given this, to prove Theorem 2, it remains to show that if G is (ε, r)-amenable, then it
admits a set of edges D of size at most εdmax|E| whose removal leaves stable communities
of radius at most r, and some isolated vertices.

Proposition 1. Suppose that a finite graph G = (N, E) is (ε, r)-amenable. Then there
exists a set of edges D ⊆ E such that |D| ≤ εdmax|E|, and for each i ∈ N the connected
component of i in G′ = (N, E \ D) has radius at most r and is either singleton or stable.

The idea behind the proof of this proposition is simple: start with communities separated
by a small set of edges, whose existence is given by the fact that G is (ε, r)-amenable. If
a community is not stable, it has a member with more neighbors outside the community
than inside it. Banish this member to its own singleton community, and repeat until all
communities are stable or singletons. The crux is to show that this ends after a small
number of steps.

Proof of Proposition 1. Let (C1, . . . , CK) witness (ε, r)-amenability, so each Ck has radius
at most r and

∑
k |∂Ck| ≤ ε|E|. If Ck is stable, set C ′

k := Ck. Otherwise, there exists
i ∈ Ck such that |Ni ∩ Ck| < |Ni \ Ck|. Let S := Ck \ {i}. Removing i decreases the
boundary by at least 1: it removes |Ni \ Ck| boundary edges and creates |Ni ∩ Ck| new
boundary edges, so |∂S| ≤ |∂Ck| − 1. If S is still unstable, repeat the same operation.
Since |∂(·)| is a nonnegative integer that drops by at least 1 each time, this procedure
terminates after at most |∂Ck| deletions, yielding a set C ′

k ⊆ Ck that is either empty or
stable.

Let U := N \
⋃

k C ′
k be the set of vertices not contained in the resulting stable sets.

By the bound above, the peeling procedure deletes at most |∂Ck| vertices from Ck, hence
|U | ≤

∑
k |∂Ck|. Now let D be the union of

⋃
k ∂C ′

k and all edges incident to the vertices

15



in U . Then,
|D| ≤

∑
k

|∂C ′
k| + dmax|U |.

Since the number of boundary edges decreased by at least the size of U ,∑
k

|∂C ′
k| + dmax|U | ≤ (

∑
k

|∂Ck| − |U |) + dmax|U | ≤ dmax
∑

k

|∂Ck| ≤ εdmax|E|.

In G′ = (N, E \ D), every vertex in U is isolated, hence a singleton component. Any
other vertex lies in some C ′

k ⊆ Ck, which is stable. Since Ck has radius at most r, so does
C ′

k.

Proof of Theorem 2. Since G = (N, E) is (ε, r)-amenable, by Proposition 1 there exists
a set of edges D ⊆ E such that |D| ≤ εdmax|E|, N = C ∪ U , where C is the union of
the stable sets (C1, C2, . . .), each Ck is a connected component of the graph (N, E \ D) of
radius at most r, and each i ∈ U is a singleton component in this graph. Assign to each
community Ck a leader ℓk ∈ Ck such that Ck ⊆ Br(ℓk).

Let C = ∪kCk so that N is the disjoint union of C, the agents who are members of
communities, and U , the agents who are not. We will construct our action-symmetric
equilibrium by fixing the behavior of the agents in C, and relying on an existence result to
extend the strategy profile to the agents in U . For both groups, we assume that all private
messages are empty, and any private messages are ignored, so that there is no incentive to
send private messages.

We start by specifying the behavior of the agents in C. The strategy of each leader
ℓk ∈ Ck is as follows:

1. choose a public message mℓk
uniformly at random from {−1, +1};

2. take action aℓk
= mℓk

, regardless of any messages received;

3. in the (off-path) event that mℓk
is not in {−1, +1}, choose the action aℓk

uniformly
from {−1, +1}.

Fix the strategy of any non-leader i ∈ Ck to

1. send an empty public message;

2. take action ai = mℓk
if the leader’s message is in {−1, +1};

3. in the (off-path) event that mℓk
is not in {−1, +1}, choose the action ai uniformly

from {−1, +1}.
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Thus, members of communities follow a leader equilibrium using the leader’s public messages
(as opposed to the private ones used in Theorem 1), and ignore any off-path messages.
Note that these strategies are action-symmetric.

Given that the agents in C follow these strategies, it is not immediately obvious what
the best-responses are of the agents in U . The issue is that depending on the graph
structure and the set D, it could be that an agent in U receives the public messages of
many leaders, and that their neighbors, who are also in U , likewise see the same messages.
In this case, they could, for example, coordinate to follow the message of one particular
leader, or alternatively follow another one. To address this problem, we do not construct
their strategies explicitly, but instead apply an existence result.

We define a finite normal form game played by the agents in U . For each i ∈ U , let
Li be the set of leaders who are in Br(i), i.e., Li = {ℓk : ℓk ∈ Br(i)}. A pure strategy of
i is a map si : {−1, +1}Li → {−1, +1}. This will be interpreted as the action i will take
in the original game when observing a given tuple of public messages from the leaders in
their radius of communication. Given a pure strategy profile s, the expected utility of the
agents is the expectation of (1), their utility in the original game, where the agents in C

are dummy players playing as described above, and the agents in U use their strategies in
s to choose their actions as a function of the public messages sent by the leaders.

The map ι defining action-symmetry is what Nash (1951) calls an automorphism or
symmetry of this game, as it preserves payoffs: ui(ι(s1), . . . , ι(sn)) = ui(s1, . . . , sn). He
shows (Theorem 2, p. 289) that given an automorphism, there exists a mixed equilibrium
that is invariant to the automorphism, which in our setting precisely translates to action-
symmetry. Thus, we have an action-symmetric equilibrium s∗ of this restricted game of
the agents in U . For each i ∈ U we define a strategy in the original game as follows:

1. send an empty public message;

2. if the public messages of the leaders in Li are all in {−1, +1}, take the action specified
by applying s∗

i to these messages;

3. if at least one leader in Li sends a public message not in {−1, +1}, choose an action
uniformly at random.

This is the obvious lifting of the strategy s∗
i to the original game. It follows immediately

from the equilibrium property of s∗ that agents in U are best responding on path. It thus
remains to be shown that agents in C are best responding.

Non-leaders are best-responding because of the stability property of the communities:
they have at least as many neighbors in their own community, and these will take the
action recommended by the leader, and so no improvement is possible. Deviations other
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than not following the leader—i.e., sending non-empty public or private messages—are
easily ruled out, as all such messages are ignored.

To verify that leaders are best-responding, we need to check that they have no incentive
to deviate from choosing their public messages uniformly from {−1, +1} and instead
choosing (say) +1. All other deviations (including sending a public message not in
{−1, +1} and taking an action other than the message) are again easy to rule out.

Fix a leader ℓ. If ℓ has no neighbors outside its community then clearly there is no
profitable deviation, since ℓ is guaranteed to coordinate with all its neighbors. Otherwise,
let j be a neighbor of ℓ. If j ∈ C then j ignores ℓ’s messages and there’s no incentive
to deviate. Suppose j ∈ U . The action of this agent is a (random) function s∗

j of the
messages of the leaders in Br(j), that is aj = s∗

j (mℓ, mBr(j)\{ℓ}). Thus, the probability
that j chooses aj = mℓ is

P [aj = mℓ] = P
[
s∗

j (mℓ, mBr(j)\{ℓ}) = mℓ

]
.

Conditioned on sending the message mℓ = +1, this probability is

P [aj = mℓ|mℓ = +1] = P
[
s∗

j (+1, mBr(j)\{ℓ}) = +1
∣∣∣mℓ = +1

]
= P

[
s∗

j (+1, mBr(j)\{ℓ}) = +1
]
,

where the second equality is a consequence of the fact that mℓ, mBr(j)\{ℓ} and s∗
j are all

independent, as the randomization in the choice of mixed strategy is independent of what
occurs in the game.

Now, s∗
j and ŝ∗

j = ι(s∗
j ) have the same distribution by action-symmerty. Thus, and

since s∗
j is independent of the public messages,

P [aj = mℓ|mℓ = +1] = P
[
ŝ∗

j (+1, mBr(j)\{ℓ}) = +1
]
.

It follows from the definition of ι that

P [aj = mℓ|mℓ = +1] = P
[
s∗

j (−1, −mBr(j)\{ℓ}) = −1
]
.

Since mBr(j)\{ℓ} and −mBr(j)\{ℓ} have the same distribution (and are independent of s∗
j )

it follows that

P [aj = mℓ|mℓ = +1] = P
[
s∗

j (−1, mBr(j)\{ℓ}) = −1
]
,

which is equal to the probability that aj = mℓ conditioned on mℓ = −1. Thus, the
probability that j decides to follow the leader’s message is independent of the message,
and mixing is a best response for the leader.
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3.2 Local strategy profiles

The proof of Theorem 1 relies on a given partition of the social network into connected
components with small boundaries. One may object that agreeing on this partition requires
some global coordination, and that it would be interesting to know whether coordination
on actions can be achieved without first coordinating on communities.

Leader equilibria also require a choice of leader, which again can be viewed as a
coordination problem. As we show below, this is a relatively easy problem to solve: given
a partition, we can choose a leader locally at random using public messages, and then
proceed with the leader equilibrium, coordinating on actions using private messages. The
more challenging problem is the local choice of partition.

In this section, we consider graphs that “look the same” around each vertex, up to
radius r. An illustrative example is the n × n torus: a two dimensional grid, in which nodes
at the boundaries are connected to the corresponding nodes on the opposite side. In this
graph the r-neighborhood of all agents are identical. We consider strategy profiles that are
local, in the sense that they do not require a globally-coordinated partition of the graph
into communities, and also do not require a priori coordination on leaders. In this setting,
we show that amenability remains a sufficient condition for coordination, but with weaker
guarantees. Specifically, we show that for any graph that is (ε, r)-amenable there exists a
local, action-symmetric equilibrium with expected inefficiency at most ε

(
1 + log 1

ε

)
. Thus,

inefficiency is still small when ε is small, but larger than what we can guarantee without
the locality restriction.

To coordinate locally, agents will use both public and private communication. First,
agents will use public messages to construct communities, and to choose their leaders. They
will then play a leader equilibrium, implemented as before using private communication.

To construct communities using public communication, the agents will decide locally
which edges of the original graph to remove, with the communities being the connected
components of the remaining graph. Fix a connected subgraph F of radius r; on the torus
we take F to be a (r + 1) × (r + 1) squares, whose surface-to-volume ratio is ε = 4/(r + 1).
In general, we will want F to have the lowest surface-to-volume ratio possible among all
subgraphs of radius r.

Let F ′ denote a subgraph that is isomorphic to F ; on the torus, these subgraphs are
precisely the translated copies of the square. Using public communication, the agents will
decide whether or not to select each F ′. This decision will be made independently for
each such F ′, including overlapping ones. The probability of selecting F ′ will be chosen so
that each agent will, with high probability, be a member of some selected F ′. The edges
removed are the boundary edges of all the selected F ′s, with the selection probability being
low enough so that the total number of edges removed is unlikely to be too large. The
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edges adjacent to agents who are not members of any selected F ′ are also removed, making
them singleton communities. The connected components of the remaining graph form the
communities, and finally the public messages are also used to select the leader of each
community. Figure 4 illustrates this rule.

C1

C2

C3

C6

C4
C5

C7

Figure 4: In the equilibrium constructed in the proof of Theorem 3, agents choose at
random which tiles should be selected. Communities are the intersections of the selected
tiles. Agents outside the selected tiles form singleton communities.

Note that since agents prefer not to be at the boundaries of communities, care needs to
be taken to ensure that the local choice of communities is incentivized. Our main tool is
the computer-science technique of “secret-sharing” (Shamir, 1979): when a group of agents
F ′ needs to choose at random with probability p whether to select their subgraph, we have
each send a public message mi chosen uniformly from [0, 1], add these messages, and select
F ′ if the fractional part of their sum is in [0, p]. It is easy to verify that as long as F ′ is not
a singleton, agents are indifferent between sending any message in [0, 1]. Since we have to
repeat this for many subgraphs F ′, the public message mi will in fact have to be a tuple of
many independent messages, each distributed uniformly on [0, 1].

We formalize the notion of graphs that “look the same” around each vertex as follows.
We say that G = (N, E) is r-locally-transitive if for any two vertices i, j ∈ N there exists
a rooted graph isomorphism between Br(i) and Br(j): a bijection φ : Br(i) → Br(j)
such that (1) φ(i) = j, and (2) the bijection preserves vertex adjacency: (i, j) ∈ E ⇐⇒
(φ(i), φ(j)) ∈ E. A strategy profile σ is network-symmetric if for all i, j ∈ N for for every
rooted graph isomorphism φ : Br(i) → Br(j) it holds that φ(σi) = σj , where we extend φ

to a map φ : Ai → Aj in the obvious way. This notion captures the idea that all agents
follow the same strategy, rather than having different roles in the strategy profile, avoiding
the conceptual need for a central planner.

Theorem 3. Suppose G is (ε, r)-amenable and (2r +1)-locally transitive. Then there exists
a network-symmetric, action-symmetric leader equilibrium with radius of communication
2r and expected inefficiency at most ε

(
1 + log 1

ε

)
.
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This theorem shows that efficient coordination is possible on an (ε, r)-amenable graph
even without reliance on a global partition. Nevertheless, in our construction communication
is less efficient, by a factor of 1 + log 1

ε , and requires a larger radius of communication.

4 Near-optimality of leader equilibria on cycle graphs

Theorem 1 shows that on an (ε, r)-amenable graph there is an equilibrium with radius of
communication r that achieves inefficiency ε. A natural question is: are there equilibria
that are more efficient than leader equilibria? In general, we do not know the answer to
this question. In the next section, we give a lower bound, showing that if the best leader
equilibrium has inefficiency ε, then no strategy profile can achieve inefficiency less than
ε2/8. In this section, we show that for the particularly simple example of cycle graphs
leader equilibria are optimal. In fact, we show that no action-symmetric strategy profile
can achieve lower inefficiency.

In a cycle graph, the set of agents is N = {0, 1, . . . , n − 1}, and i is connected to j if
i = j ± 1 mod n. We assume that n is much larger than the radius of communication
(n ≥ 5r suffices), and, moreover, for simplicity, that the number of agents n is a multiple of
2r+1, so that we can divide the circle into segments of length 2r+1 (and hence radius r) as
in Figure 1. The average inefficiency of the corresponding leader equilibrium is 1/(2r + 1),
as we explain in § 2.1 above.

Consider an action-symmetric strategy profile that achieves average inefficiency x. We
think of the actions (ai)i∈N as random variables defined on the same probability space
P. These random variables take values in {−1, +1}, and all have expectation zero, by
action-symmetry. Thus, they are vectors in L1

0, the space of zero-mean random variables.
This is a vector space, and indeed a Banach space under the metric d(X, Y ) = E [|X − Y |].
Under this metric, each ai has unit norm.

Since the average inefficiency is x, there must be a sequence of agents i, i+1, . . . , i+2r+1
mod n with average inefficiency 1

2r+1
∑i+2r

j=i E [|aj − aj+1|] ≤ x. Hence
∑i+2r

j=i d(aj , aj+1) ≤
(2r + 1)x. From the triangle inequality if follows that d(ai, ai+2r+1) ≤ (2r + 1)x. Since the
radius of communication is r, ai and ai+2r+1 are independent, and so d(ai, ai+2r+1) = 1.
We have thus shown that x ≥ 1/(2r + 1), and so no strategy profile can achieve inefficiency
lower than the leader equilibrium.

5 Impossibility of coordination on non-amenable graphs

Theorems 1 and 2 show that efficient coordination is possible on an amenable graph. We
now turn to the other direction and show that non-amenable graphs do not admit efficient
coordination. On such graphs every finite set has a large surface-to-volume ratio. As
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a result, any attempt to partition the graph into communities necessarily creates many
agents on the boundary, who face a high probability of mismatch with their neighbors.
This precludes the existence of a leader equilibrium with low inefficiency.

The impossibility is in fact stronger. On a non-amenable graph no equilibrium of any
kind can achieve low inefficiency. In fact, even if we ignore incentives and consider general
strategy profiles, the resulting actions will still generate a large amount of mismatch.

Thus, amenability is not only a sufficient, but also a necessary condition for the existence
of efficient coordination. The next theorem makes this precise.

Theorem 4. Suppose G admits an action-symmetric strategy profile with a radius of
communication r and average expected inefficiency ε. Then G is (

√
8ε, r)-amenable.

This result provides a partial converse to Theorem 1. It is partial since
√

8ε is much
larger than ε (for small ε) and so we cannot preclude that for intermediate ranges there
are non-leader equilibria that achieve low inefficiency. Nevertheless, these results together
qualitatively characterize amenability as a necessary and sufficient condition for low
inefficiency. Since a graph is (ε, r)-amenability if and only if it admits a leader equilibrium
with inefficiency ε, this theorem immediately implies (by a transformation of ε) that if the
best leader equilibrium has inefficiency ε, then no equilibrium can achieve inefficiency less
than ε2/8.

As noted above, incentives do not play a role here: this result applies to any strategy
profile. We accordingly rephrase it in a more general, probabilistic framework. The
advantage will be that this version is easily applied to a large class of related economic
models, as we explain in §6.

Theorem 5. Let G = (N, E) be a finite graph, and let (Zi)i∈N be independent random
variables associated to each vertex. Let (Xi)i∈N also be random variables associated to each
vertex, with each Xi measurable with respect to the sigma-algebra generated by (Zj)j∈Br(i).
Suppose that E [Xi] = 0 and E

[
X2

i

]
= 1 for all i. If

1
|E|

∑
(i,j)∈E

1
2E

[
(Xi − Xj)2

]
≤ ε,

then G is (
√

8ε, r)-amenable.

Theorem 4 is an immediate corollary, as each action ai (corresponding to Xi) is mea-
surable with respect to the sigma-algebra generated by the mixed strategies (corresponding
to Zj) of the agents in Br(i).

To prove Theorem 5, we start with random variables (Xi)i∈N satisfying the hypothesis
of the theorem. These correspond to an action profile on G with small average expected
inefficiency ε.
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In the first step, for each agent we construct a probability distribution over the agents
in her r-neighborhood that measures how much each agent influences her action. Low
inefficiency implies that neighboring agents rarely take different actions. We show that
this, in turn, forces their influence distributions to be very close to each other in terms of
total variation distance.

In the second step, we use these influence distributions to associate to each agent a
leader. Since neighboring agents have similar distributions, the probability that they end
up choosing the same leader is high. Agents that select the same leader form a community
and choose the same action, so only a small fraction of agents lie on the boundaries
between communities. This gives a partition of the graph into small communities with low
surface-to-volume ratio, which characterizes amenable graphs. We explain the proof ideas
in more detail below.

5.1 Shapley influence distributions

Let Z = (Zi)i∈N be independent (but not necessarily identically distributed) random
variables in a standard Borel probability space, indexed by a finite or countable set N . For
a finite S ⊆ N denote ZS = (Zi)i∈S .

Let X be a random variable with mean zero and unit variance, measurable with respect
to σ(Z), i.e., X = f(Z) for some measurable f . We would like to calculate an influence
distribution: a probability measure µX over N that captures how much each Zj influences
X. In our setting, this will measure how much each agent’s action was influenced by each
other agent in its r-neighborhood.

Formally, let B(Z) be the collection of real random variables X that are measurable
with respect to the sigma-algebra generated by Z and such that E [X] = 0, E

[
X2]

= 1.
An influence distribution map X 7→ µX assigns to each X ∈ B(Z) a probability measure
µX over N . We require µX to be supported on those j’s that determine X. That is, for
any S ⊆ N such that X is measurable with respect to σ(ZS), it holds that µX(S) = 1.

A desirable property of an influence distribution map is that if X, Y ∈ B(Z) are close,
then the influence distributions µX and µY should be close. In particular, for our purposes
we will need that the total variation distance between µX and µY should be small whenever
X and Y are close in L2. Recall that the total variation distance between two probability
measures µ, ν ∈ ∆(N) is given by

dTV(µ, ν) = sup
A⊆N

|µ(A) − ν(A)| =
∑
i∈N

1
2 |µ(i) − ν(i)|.

To this end, given random variable X ∈ B(Z), define a cooperative game vX for the
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set of player N via

vX(S) = Var (E [X|ZS ]) . (2)

That is, vX assigns to each non-empty finite coalition S ⊆ N the variance of the random
variable E [X|ZS ]. This is a measure for how much the collection of random variables
ZS influences X. To see this, it is helpful to take a geometric perspective: E [X|ZS ] is
the projection, in the Hilbert space of square-integrable random variables, of the random
variable X to the subspace of σ(ZS)-measurable random variables. The variance is the
square of the norm, and when this is high ZS contains much information about X.

Let µX : N → R be the Shapley values8 of the game vX . Since vX ≥ 0, vX is monotone,
and vX(N) = Var(X) = 1, µX is indeed a probability measure on N .

We call µX the Shapley influence distribution of X with respect to (Zi)i. It is easy to
see that if X is measurable with respect to σ(ZS), and if j ̸∈ S, then vX(T ∪ {j}) = vX(T )
for all T—i.e., j is a null player—and thus µX(j) = 0. Hence the Shapley influence
distribution is indeed an influence distribution.

The next proposition is the main technical contribution of this paper, showing that the
Shapley influence distribution map has a strong contraction property.

Proposition 2. Let Z = (Zj)j∈N be independent random variables indexed by a finite
or countable set N . Then for all X, Y ∈ B(Z) the Shapley influence distribution map µ

satisfies dTV(µX , µY ) ≤
√
E [(X − Y )2].

Conceptually, this contraction result shows that the Shapley influence distribution
map is stable to small perturbations.9 This will be useful to us, as we will apply it to
X = ai and Y = aj for a pair of highly correlated neighbors (i, j) ∈ E, and will be able to
conclude that their Shapley influence distributions are close. The remainder of this section
is devoted to the proof of this proposition.

Denote by L the set of σ(Z)-measurable random variables X such that E [X] = 0 and
E

[
X2]

< ∞. The set L is a separable real Hilbert space, when equipped with the inner
product (X, Y ) = E [X · Y ]. Denote by Li the subspace of σ(Zi)-measurable elements of L.
We observe that Li is a closed subspace of L. For each i, let Ui be a (finite or countable)
orthonormal basis of Li. An orthonormal basis of L is then the collection U of random
variables of the form US =

∏
i∈S Ui where S is a finite subset of N and each Ui is in Ui.

Given a finite, non-empty S ⊆ N , let US be the collection of all such US , so that U = ∪SUS .
8When N is infinite the usual definition of the Shapley value cannot be applied, as one cannot draw

uniformly a permutation of N . Instead, we use the Harsanyi dividend definition of the Shapley value, which
is still well-defined.

9In Appendix B we discuss the stability of classical Shapley values.
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We can thus write any X ∈ L as a linear combination of elements of U :

X =
∑
S

∑
US∈US

x̂US
US ,

where x̂US
= (X, US) ∈ R is the coefficient of US .

By Parseval, we have that for X, Y ∈ L

(X, Y ) =
∑
S

∑
US∈US

x̂US
· ŷUS

.

Using this, for a finite S ⊆ N we can write

E [X|ZS ] = E

∑
T

∑
UT ∈UT

x̂UT
UT

∣∣∣∣∣∣ZS

 =
∑
T

∑
UT ∈UT

x̂UT
E [UT |ZS ].

Recall that UT =
∏

i∈T Ui, where each Ui is σ(Zi)-measurable, and thus this is a product
of independent random variables. Note that

E [Ui|ZS ] =

Ui if i ∈ S

0 if i ̸∈ S.

Hence

E [UT |ZS ] =

UT if T ⊆ S

0 if T ̸⊆ S.

Thus,

E [X|ZS ] =
∑
T ⊆S

∑
UT ∈UT

x̂UT
UT .

Since U is an orthonormal basis, we get by Parseval that

vX(S) = Var

 ∑
T ⊆S

∑
UT ∈UT

x̂UT
UT

 =
∑
T ⊆S

∑
UT ∈UT

x̂2
UT

.

Denote

x̂2
T =

∑
UT ∈UT

x̂2
UT

, (3)

so that

vX(S) =
∑
T ⊆S

x̂2
T .
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This is exactly the Harsanyi dividend representation of a cooperative game (Harsanyi,
1982), with dividends x̂2

T . Therefore, by the standard Shapley value formula in terms of
Harsanyi dividends,

φk(vX) =
∑
S∋k

1
|S|

x̂2
S .

Fix X, Y ∈ L with E
[
X2]

= E
[
Y 2]

= 1. By the definition of µ,

dTV(µX , µY ) = 1
2

∑
i

|µX(i) − µY (i)| = 1
2

∑
i

∣∣∣∣∣∑
S∋i

1
|S|

x̂2
S −

∑
S∋i

1
|S|

ŷ2
S

∣∣∣∣∣ .

By the triangle inequality we have

dTV(µX , µY ) = 1
2

∑
i

∣∣∣∣∣∑
S∋i

x̂2
S − ŷ2

S

|S|

∣∣∣∣∣ ≤ 1
2

∑
S

|x̂2
S − ŷ2

S |.

Recalling the definition of x̂2
S in (3),

dTV(µX , µY ) ≤ 1
2

∑
S

∣∣∣∣∣∣
∑

US∈US

x̂2
US

−
∑

US∈US

ŷ2
US

∣∣∣∣∣∣ ,

and by another application of the triangle inequality

dTV(µX , µY ) ≤ 1
2

∑
U∈U

∣∣∣x̂2
U − ŷ2

U

∣∣∣ .

By Cauchy-Schwarz,

∑
U∈U

|x̂2
U − ŷ2

U | =
∑
U∈U

|x̂U − ŷU | · |x̂U + ŷU | ≤
√ ∑

U∈U
(x̂U − ŷU )2 ·

√ ∑
U∈U

(x̂U + ŷU )2.

By Parseval,
∑

U (x̂U − ŷU )2 = E
[
(X − Y )2]

and
∑

U (x̂U + ŷU )2 = E
[
(X + Y )2]

. The
latter is at most 4, and so

dTV(µX , µY ) ≤
√
E [(X − Y )2].

This completes the proof of Proposition 2.

Remark 1. Proposition 2 is related to (Galicza and Pete, 2024, Lemma 2.9), which
establishes a looser relationship between covariances and the “clue”, a way of measuring the
dependence of X on the input variables (Zj)j∈N using Fourier analysis on the hypercube.
The proof of Proposition 2 shows that this “clue” is in fact equal to the Shapley influence
distribution when the Zj are i.i.d. unbiased coinflips, so that our Proposition 2 strengthens
and clarifies their Lemma 2.9.
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5.2 Coupling

In addition to the influence distributions of Proposition 2, to prove Theorem 5 we will
make use of what we call grand couplings.

Let µ1, µ2 be probability measures on a finite or countable set N . A coupling of these
measures is a pair of random variables L1, L2 defined on the same probability space and
such that Li has a distribution µi. We will be interested in couplings that maximize the
probability that L1 = L2. A classical result (due to Doeblin, see Lindvall, 1991) is that
the minimum of P [L1 ̸= L2] over all couplings of µ1, µ2 is achieved and is exactly equal to
the total variation distance dTV(µ1, µ2).

One can ask the same question for three measures, µ1, µ2, µ3 ∈ ∆(N). In this case it
turns out that one can always find a coupling (or perhaps a throupling) L1, L2, L3 such
that for each i, j ∈ {1, 2, 3} it holds that P [Li ̸= Lj ] ≤ 2dTV(µi, µj). Remarkably, the
same holds for coupling of more than three measures. In fact, the following proposition,
which is due to Kleinberg and Tardos (2002) (see also Broder, 1997, for a closely related
idea), shows that one can couple all the probability measures on N and achieve the same
guarantee. A particularly good exposition is given by Angel and Spinka (2019).

Proposition 3 (Kleinberg and Tardos (2002); Angel and Spinka (2019)). Let N be a finite
or countable set, and let (µi)i be the set of all probability measures on N . Then there exists
a probability space with random variables (Li)i such that Li has a distribution µi, and for
each i, j ∈ N it holds that P [Li ̸= Lj ] ≤ 2dTV(µi, µj).

We describe a simple construction that achieves this, given by Angel and Spinka (2019);
we refer the reader to the proof there. Let (Ek)k∈N be i.i.d. random variables with the
unit exponential distribution (i.e., P [Ek ≤ x] = 1 − e−x for x ≥ 0) defined on a common
probability space. For each µi ∈ ∆(N), let

Li = arg min
k∈N

Ek

µi(k) .

Then P [Li = k] = µi(k) and

P [Li ̸= Lj ] ≤ 2dTV(µi, µj)
1 + dTV(µi, µj) ≤ 2dTV(µi, µj).

The relevance of Proposition 3 to amenability of graphs was first noted by Hutchcroft
and Lopez (2024). We follow a similar approach, namely, to use the grand coupling to
construct random partitions of the vertex set according to common outputs, so that the
average surface-to-volume ratio of cells is bounded by twice the average total variation
distance between neighbors.
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5.3 Proof of Theorem 5

Given Proposition 2 and Proposition 3, we are ready to prove the main result of this
section.

Proof of Theorem 5. Since each Xi is measurable with respect to the sigma-algebra gen-
erated by (Zj)j∈Br(i), by Proposition 2 we can assign to each Xi a probability measure
µi = µXi on N such that µi(Br(i)) = 1 and such that for any pair of vertices i, j ∈ N , the
total variation distance dTV(µi, µj) is at most

√
E [(Xi − Xj)2]. Using the grand coupling

of Proposition 3 we can couple all these measures in a process (Li)i∈N taking values in N

such that Li has law µi and

P [Li ̸= Lj ] ≤ 2dTV(µi, µj) ≤ 2
√
E [(Xi − Xj)2].

Let D be the (random) subset of E given by

D = {(i, j) ∈ E : Li ̸= Lj}.

Then Li is constant on each connected component of G′ = (N, E \ D). Since µi(Br(i)) = 1
it follows that Li ∈ Br(i), and so the connected component of i is a subset of Br(Li).

Finally,

E [|D|] =
∑

(i,j)∈E

P [Li ̸= Lj ] ≤ 2
∑

(i,j)∈E

√
E [(Xi − Xj)2] ≤

√
8ε|E|,

where the last inequality follows from Jensen’s inequality.

Remark 2. Both the results and proof of Theorem 5 is reminiscent of the methods of
Csóka, Harangi, and Virág (2020), who worked under a “uniform for small sets” notion
of non-amenability rather than our weaker “statistical” notion of non-amenability (i.e.,
non-hyperfiniteness). The authors of that paper work primarily with the entropy rather
than the variance, but discuss entropy versions of their inequalities in Section 4.2. Their
method is somewhat different than ours and does not identify the contraction property of
Proposition 2.

6 Conclusion

In this paper, we identify amenability as a geometric condition that captures the possibility
of local coordination on a social network. Theorems 1, 2 and 3 show that on amenable
graphs it is possible to achieve low inefficiency, while Theorem 4 shows that low inefficiency
implies that a graph is amenable.

Theorem 5 is a general result stating that if a finite graph admits local random variables
that are highly correlated, then it must be amenable. Given the generality of this result,
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we expect it to have further applications. For example, if we consider a repeated game
version of our setting, then agents’ actions at time t would depend on their neighbors in a
ball of radius t, and so on non-amenable graphs high correlation is impossible. This still
holds in even more general settings that go beyond pure coordination games. For example,
agents could have idiosyncratic preferences over the actions, i.e., independent private types
that influence their payoffs, making them prefer to coordinate on a particular action.

A question that we leave unanswered is whether leader equilibria are always optimal.
Equivalently, whether (ε, r)-amenability coincides with having ε inefficiency in equilibria
with a radius of communication r. For cycle graphs, we show that this holds in §4, but the
technique used there does not easily generalize. A possible avenue for tackling this problem
could be through applying Shapley values to the L1 norm, rather than the L2 norm that we
use. That is, letting the influence distribution be given by the Shapley values of the game
v′

X(S) = ∥E [X|ZS ]∥1, rather than our current definition (2) of vX(S) = ∥E [X|ZS ]∥2
2. For

these Shapley values we do not know how to prove a contraction theorem corresponding to
Proposition 2.
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A Proof of Theorem 3

An important tool in the proof of Theorem 3 is secret-sharing, which allows us to use public
messages to choose for each subgraph F ′ of radius at most r an independent, uniform [0, 1]
random variable, in an incentive compatible way.

Let ν be the probability measure on the message space M = AN given by choosing each
letter independently, from the distribution that assigns probability 1/2 to ∅ and probability
1/4 to both +1 and −1. Given a message mi = (α1, α2, . . .) chosen from ν, we can map it
to a message distributed uniformly on [0, 1] by f(mi) =

∑∞
n=1 2−nv(αn), where v(∅) = 0,

v(−1) = v(+1) = 1. This mapping is invariant to negation, i.e., f(−mi) = f(mi). By a
similar construction, we can in fact map mi to a sequence (m1

i , m2
i , . . .) of i.i.d. uniform

[0, 1] messages. For our purposes we will not need an infinite sequence, and instead will map
mi to a tuple (m0

i , (mF ′
i )F ′), where F ′ ranges over all radius most r connected subgraphs

of G that contain i and at least one other agent. That is, we interpret a message as
consisting of an initial number m0

i and another number mF ′
i for each non-trivial subgraph

i participates in.

Lemma 1. Suppose that each agent i sends a public message mi = (m0
i , (mF ′

i )F ′) as above.
For each connected subgraph F ′ = (V ′, E′) of radius at most r and having at least two
vertices, let ZF ′ =

∑
i∈V ′ mF ′

i mod 1. Then the collection ZF ′ is i.i.d. uniform on [0, 1],
and furthermore it is i.i.d. uniform on [0, 1] even when conditioned on any message mi.

The proof is immediate, relying on the fact that if X is uniform on [0, 1], then so is
X + a mod 1 for any a ∈ R.

Given this lemma, we can define our equilibrium strategies. We fix a connected subgraph
F of radius at most r, to be determined later. Given a subgraph F ′, we write F̄ ′ for the
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subgraph F ′, together with the edges in ∂F ′, and the nodes contained in these edges. I.e.,
F̄ ′ is F ′, expanded to include the nodes connected to it. We call it the expanded graph of
F ′.

All agents will send public messages mi = (m0
i , (mF ′

i )F ′) as above. As in Lemma 1, let
ZF ′ =

∑
i∈V ′ mF ′

i mod 1. We fix a probability p ∈ [0, 1], also to be determined later.
Given this, we define a random set of edges D = D1 ∪ D2, as follows. Let F ′ be

a subgraph isomorphic to F and such that F̄ ′ is isomorphic to F̄ . We say that F ′ is
selected if ZF ′ ≤ p. Lemma 1 thus implies that the event that various F ′s are selected are
independent, have probability p, and moreover are still independent and have probability
p conditioned on any messages sent by an agent i.

The set D1 is the union of all the boundaries of the selected subgraphs. The set
D2 is the set of all edges of all agents i that do not belong to any selected F ′. Let
C1, C2, . . . be the connected components of the social network graph, with the set of
edges D removed: (V, E \ D). We say that ℓk ∈ Ck is the leader of Ck if m0

ℓk
maximizes

{m0
i : i ∈ Ck, Ck ⊆ Br(i)}. I.e., the leader of each community is the member whose

first-coordinate message is highest.
Note that each agent, after observing the public messages, knows which community Ck

they are in, and who its leader is, since the radius of observation is 2r. For the same reason,
leaders can send private messages to all the members of their communities. Indeed, in the
next stage, they send uniform {−1, +1} private messages to their community members,
and in the last stage, members follow these recommendations when choosing their actions.
As in previous constructions, all private messages not in {−1, +1} are ignored and lead to
actions being chosen uniformly at random. Public messages in an unexpected format are
likewise ignored and result in the same choice of actions.

Regardless of the choice of F and p, this strategy profile is an equilibrium. That there
is no incentive to deviate from the public message distribution follows from Lemma 1.
The remaining elements of the profile are as in previously discussed leader equilibria, and
hence again admit no profitable deviations. We also note that this strategy profile is
action-symmetric. It is also network-symmetric, as its definition does not involve the
identity of an agent, or their location in the graph.

The efficiency of this equilibrium depends on the choice of F and p. To complete the
proof of Theorem 3, we show that we can choose F and p to get the required efficiency.

Since the network is an (ε, r)-amenable graph, it can be (deterministically) partitioned
into connected components {C1, ..., CK} of radius at most r, and so that the set of edges
E′ connecting different components is of size |E′| ≤ ε|E|. Then,

|E′|
|N |

= 1
|N |

∑
k

|∂Ck| = 1
|N |

∑
k

|∂Ck|
|Ck|

|Ck|,
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which is the average surface-to-volume ratio weighted by component size. Thus, there
exists at least one component C such that

|∂C|
|C|

≤ |E′|
|N |

≤ ε|E|
|N |

= εdmax.

We let F be this connected component.
Let K denote the family of subgraphs F ′ of G that are isomorphic to F , and such that

F̄ ′ is isomorphic to F̄ . Let Mi be the number of subgraphs in K that contain i. Let Mi

be the number of subgraphs in K that contain i. Since G is (2r + 1)-locally transitive,
every F ′ ∈ K that contains i is contained in the ball of radius 2r + 1 around i. Hence this
number is the same for every vertex; denote it by M := Mi. Note that |K| = M |N |/|F |.

Let

p = min{ 1
M

log 1
ε

, 1}

We end the proof of Theorem 3 by showing that with this choice of F and p we have the
required inefficiency.

Let K′ be a random subgraph of K obtained by selecting each K ∈ K independently
with probability p. The expected number of boundary edges of the selected subgraphs,
D1 =

⋃
K∈K′ ∂K, is bounded above by the expected number of selected sets times the

number of boundary edges in each, that is

E[|D1|] ≤ p · |K| · |∂F | = p · |E| · M

dmax · |F |
· |∂F | ≤ p · M · ε · |E|.

Next, the probability that a vertex i is not contained in any selected K ∈ K′ equals

P[ i /∈ K, ∀K ∈ K′ ] = (1 − p)M .

Given that each vertex has degree dmax, the expected number of edges whose both
endpoints do not belong to any selected K – denoted by D2 – is bounded by

E[|D2|] ≤ (1 − p)M · dmax · |N | = (1 − p)M · |E|.

Therefore, the expected total number of deleted edges, D = D1 ∪ D2, satisfies

E[|D|] ≤ p · M · ε · |E| + (1 − p)M · |E|.

Since p = min{ 1
M log 1

ε , 1}, we obtain the desired bound on the number of deleted edges.
Particularly, if 1

M log 1
ε ≤ 1, then

(1 − p)M =
(
1 − 1

M
log 1

ε

)M
≤ e− log(1/ε) = ε.

Otherwise, p = 1, in which case (1 − p)M = 0 ≤ ε. This completes the proof of Theorem 3.
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Remark 3. Benjamini, Schramm, and Shapira (2008) apply a similar technique to general
graphs (rather than just to r-transitive ones, as we do) with the goal of showing that
(ε, r)-amenability—i.e., the existence global, deterministic partition into radius at most r

connected communities using an ε fraction of the edges—implies the existence of a local
randomized rule that generates the same kind of partition, but (as in our case) using
more edges. Their rule is somewhat involved, making it less plausible as a mechanism for
coordination.

B Stability of the Shapley value

Proposition 2 shows a contraction property of the Shapley influence distribution map. This
motivates the question of the contraction properties of the Shapley value.

Let N be a finite set of players, and let R2N \∅ be the collection of cooperative games
for these players. The Shapley value is a map φ : R2N \∅ → RN . Contraction properties of
the Shapley value capture how stable it is to changes (or measurement errors) in the game.
Let v, w be games, and suppose |v − w|∞ = maxS |v(S) − w(S)| is small. How different
are the Shapley values of v and w?

There can be a number of ways to quantify the difference between the Shapley values.
One is via the sup-norm on the Shapley values: |φ(v) − φ(w)|∞ = maxi |φi(v) − φi(w)|.
Another is by the total variation norm

dTV(φ(w), φ(v)) = 1
2 |φ(w) − φ(v)|1.

When the former is small, the error in the value of each player is small. When the latter is
small, the error in each group of players is small, which is a stronger notion. Proposition 2
yields the latter type estimate, although in a restricted setting that does not apply to all
games.

Since φ is a linear map, understanding the deviations around a game v is the same as
understanding the deviations around zero. We thus define the operator norms

∥φ∥∞→∞ = max{|φ(v)|∞ : |v|∞ ≤ 1}.

and

∥φ∥∞→1 = max{|φ(v)|1 : |v|∞ ≤ 1}.

It is easy to see that ∥φ∥∞→∞ = 1. The upper bound ∥φ∥∞→∞ ≤ 1 follows immediately
from the definition of the Shapley value, and the matching lower bound is achieved by the
game in which v(S) is one if i ∈ S and zero otherwise, for some fixed player i.

One can interpret this fact as a demonstration of the stability of the Shapley value in
the sup-norm sense: if we change v by at most ε in each coordinate, the Shapley value of
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any player will not change by more than ε. In contrast, Kumabe and Yoshida (2024) show
that the Shapley value is far from stable in the total-variation sense: a small change in the
game can cause a group of players to have a very large change in their total value—when
the number of players is large. Specifically, they show that there’s a universal constant
C > 0 such that ∥φ∥∞→1 ≥ C log |N |, and in particular ∥φ∥∞→1 goes to infinity as the set
of players becomes larger. This result also contrasts Proposition 2, in which the bound is
independent of |N |.
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