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Abstract. Let Γ be a finitely generated group, and let µ be a
nondegenerate, finitely supported probability measure on Γ. We
show that every co-compact Γ action on a locally compact Haus-
dorff space admits a nonzero µ-stationary Radon measure. The
main ingredient of the proof is a stationary analogue of Tarski’s
theorem: we show that for every nonempty subset A ⊆ Γ there is a
µ-stationary, finitely additive measure on Γ that assigns unit mass
to A.

1. Introduction

Let Γ be a finitely generated group, and let µ be a finitely supported
probability measure on Γ that is nondegenerate, i.e., whose support
generates Γ as a semigroup. Let X be a Hausdorff topological space,
and suppose that Γ acts on X by homeomorphisms.

When X is compact, there is always a µ-stationary probability mea-
sure on X, that is, a probability measure λ such that

∑
g µ(g)gλ = λ;

this follows from the Markov-Kakutani fixed point theorem. Invariant
probability measures are a particular case of stationary measures, but
invariant ones may not exist when Γ is nonamenable. Indeed, Γ is
amenable if and only if every action of Γ on a compact Hausdorff space
admits an invariant probability measure.

In this paper we go beyond the compact case, and consider locally
compact spaces. Here, there may not be a stationary probability mea-
sure, so instead we focus on infinite measures. But in this class one
can always find a stationary measure—indeed, an invariant one—by
taking the counting measure on an orbit. Accordingly, we restrict our
attention to Radon measures (in particular, measures that assign finite
mass to compact sets). The construction of stationary, infinite Radon
measures has attracted attention in particular cases; see., e.g., the case
of the action of subgroups of Homeo+(R) on R in [3, 4].
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Kellerhals, Monod, Rørdam [6] ask a similar question, but con-
sider invariant measures rather than stationary ones. Focusing on co-
compact actions—i.e., actions for which there exists a compact K ⊆ X
such that X = ∪ggK. They show that every co-compact action of Γ on
a locally compact Hausdorff space admits an invariant nonzero Radon
measure if and only if Γ is supramenable.1 Our first main result shows
that, as in the case of compact X, stationary measures always exist.

Theorem 1. Suppose Γ acts co-compactly on a locally compact, Haus-
dorff space X. Then there is a nonzero, µ-stationary Radon measure
on X.

In particular, it follows that if Γ is not supramenable, then it admits
a co-compact action on a locally compact Hausdorff space with a µ-
stationary measure, but no Γ-invariant measure.

The main component of the proof of Theorem 1 is our next main
result, Theorem 2; using Theorem 2, Theorem 1 follows by a functional-
analytic argument adapted from [6]. Theorem 2 tackles a stationary
analogue of a question posed by von Neumann [11, §4]. He asked, given
a subset A ⊆ Γ, when does there exists a Γ-invariant, finitely additive
(perhaps infinite) measure on Γ that assigns unit mass to A? Famously,
the answer given by Tarski is that such a measure exists if and only
if A is not paradoxical [10]. We ask—and answer—the same question,
but for stationary rather than invariant measures.

Theorem 2. For every nonempty subset A ⊆ Γ there is a µ-stationary,
finitely additive measure on Γ that assigns unit mass to A.

The proof of Theorem 2 considers two cases. The first is the case that
the µ-random walk on Γ visits A infinitely often, in expectation. In this
case one can essentially apply the same argument that is used in the
proof of the Markov-Kakutani fixed point theorem. The more interest-
ing case is the complement, where the measure constructed using the
Markov-Kakutani argument may fail to be stationary (Remark 3.2). In
this case, we instead construct our stationary measure using the Green
function of the µ-random walk. The interesting challenge (which does
not arise in the similar construction of the Martin boundary) is to
control the deviations from stationarity (see Remark 3.3).

1Following Rosenblatt [9], a group is said to be supramenable if it does not have
any paradoxical subsets, or equivalently if for every action of Γ on a set X and
every subset A ⊆ X there exists a finitely additive Γ-invariant measure M with
M(A) = 1; examples of groups that are amenable but not supramenable include
the lamplighter group and Baumslag-Solitar groups.
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1.1. µ-light subsets of Γ. The measures we construct in Theorem 2
are in general not countably additive, but may have this property in
some cases. We say that a subset A ⊆ Γ is µ-light if there exists a
countably additive, µ-stationary measureM on Γ such thatM(A) = 1.
Note that if M is a countably additive measure on Γ then there is a
(unique) function f : Γ → R such that M(E) =

∑
g∈E f(g). If M is

nonzero and µ-stationary, then f is positive and µ ∗ f = f , i.e., f is
a positive (left) µ-harmonic function. Thus A ⊆ Γ is µ-light if there
exists a positive µ-harmonic f such that

∑
g∈A f(g) < ∞. It follows

that if A is µ-light then every subset of A is µ-light; this provides some
justification for calling these sets µ-light.
Another justification is that every finite A is µ-light, since one can

take M to be the counting measure on Γ, divided by the size of A.
On the other hand, if Γ is infinite then Γ itself is not µ-light. To see
this, suppose M({g}) = f(g). Since f is µ-harmonic, by the maximum
principle f is either constant or else does not attain its maximum. In
both cases there are infinitely many g such that f(g) ≥ f(e), and so
M(Γ) is infinite.

Since µ-light sets play a special role in Theorem 2, it is interesting
to describe their structure geometrically. We study µ-light sets in the
particular case of Γ = Fd, the free group on d ≥ 2 generators, and
where µ is the uniform distribution on the generators: the measure
that assigns mass 1/(2d) to each of the generators and their inverses.

Let Br ⊂ Fd be the ball of radius r in Γ, under the standard word
length metric defined by the generators. Given a subset A ⊆ Fd we
denote the lower and upper exponential growth rates of A by

g(A) = lim inf
r

|A ∩Br|1/r and g(A) = lim sup
r

|A ∩Br|1/r.

Proposition 1.1. Suppose g(A) <
√
2d− 1. Then A is µ-light.

We prove this proposition by showing that if we draw a µ-harmonic
function f at random from the hitting measure on the Martin boundary
of Fd then f(A) < ∞ almost surely. To this end, we use a technique
explored in [5], involving the study of the expectation of the square
root of the randomly chosen harmonic function.

As a partial converse to this proposition we show that this bound
is tight, i.e., that there exists an A ⊆ Fd with g = g =

√
2d− 1 that

is not µ-light. Denote by |g| the standard word length norm. Let
σ : Fd → Fd be an injection such that |σ(g)| = 2|g|, and, in the Cayley
graph defined by the generators, g lies on the unique shortest path from
σ(g) to e (i.e. g is a prefix of σ(g)). For example, given g = s1s2 · · · sr,
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where each si is a generator or its inverse, one can take

σ(s1s2 · · · sr) = s1s2 · · · sr+1
r .(1.1)

Another example is

σ(s1s2 · · · sr) = s1s2 · · · srsrsr−1 · · · s1.

so that σ(Fd) is the set of palindromes.

Claim 1.2. Let A = σ(Fd). Then g = g =
√
2d− 1, and A is not

µ-light.

1.2. Necessity of the co-compactness assumption. Theorem 1
shows that stationary measures exist for co-compact actions. A natural
question is whether this result applies more generally.

The same question was addressed by Matui and Rørdam [8], regard-
ing invariant measures. They show that in the invariant setting the co-
compactness assumption is necessary: every infinite group admits an
action on a locally compact space that has no invariant nonzero Radon
measures. This implies the following result on µ-stationary measures:

Proposition 1.3. Let Γ be infinite and virtually nilpotent, and let µ be
nondegenerate and symmetric. Then there exists an action of Γ on a
locally compact, σ-compact Hausdorff space X that admits no nonzero
µ-stationary Radon measures.

Proof. By [8, Proposition 4.3], there is a locally compact, σ-compact
Hausdorff Γ-space X that admits no nonzero Γ-invariant Radon mea-
sures. Suppose λ is a µ-stationary Radon measure on X. Fix any
Y ⊆ X such that λ(Y ) < ∞. Then the function f : Γ → R given
by f(g) = [gλ](Y ) is a non-negative µ-harmonic function on G. By a
result of Margulis [7], f must be constant, because Γ is virtually nilpo-
tent and µ is symmetric (indeed, Margulis shows that if Γ is virtually
nilpotent and µ is symmetric then all non-negative µ-harmonic func-
tions are constant). Hence [gλ](Y ) = λ(Y ), and, since Y is general, λ
is Γ-invariant. It thus follows that λ is the zero measure. □

Proposition 1.3 shows that the co-compactness assumption is neces-
sary for Theorem 1, in the case of virtually nilpotent Γ and symmetric
µ. The next proposition shows that it is also necessary in the case
of Γ = Fd, the free group on d ≥ 2 generators, and where µ is the
uniform measure on the generators (i.e., as above, the measure that
assigns mass 1/(2d) to each of the generators and their inverses).

Proposition 1.4. Let Γ = Fd for d ≥ 2, and let µ be the uniform
measure on the generators. Then there exists an action of Γ on a
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locally compact, second countable, σ-compact Hausdorff space X that
admits no nonzero µ-stationary Radon measures.

The proof adapts the construction of Matui and Rørdam [8] from the
invariant case to the stationary one. We note that by following their
construction more closely one can furthermore show that the G action
on X can be taken to be free.

1.3. Open questions. Our proof of Theorem 2 crucially relies on the
assumption that µ is finitely supported. However, it seems plausible
that both Theorem 1 and Theorem 2 hold more generally. Beyond
countable groups, similar statement could apply to actions of (say) lo-
cally compact, second countable groups, with sufficiently regular mea-
sures µ.

In Propositions 1.3 and 1.4 we show that for infinite virtually nilpo-
tent groups, as well as for non-abelian free groups, the co-compactness
assumption of Theorem 1 cannot be dropped. We expect that this is
true for every infinite group.

2. Definitions

Given a function f : Γ → R and k ∈ Γ we define the left and right
translations of f by

[kf ](g) = f(k−1g)

fk(g) = f(gk).

For k ∈ Γ the function δk : Γ → {0, 1} is the characteristic function of

{k}. Note that δk = kδe = δk
−1

e .
We denote convolution of measures by ∗, and denote by µ(n) the n-

fold convolution of µ with itself. We denote by µ ∗ f the convolution
of µ with the function f :

[µ ∗ f ](g) =
∑
h

µ(h)[hf ](g) =
∑
h

µ(h)f(h−1g).

We say that f is (left) µ-harmonic if µ ∗ f = f .
Given an action of Γ on a set S, and given a finitely additive measure

M on S, we denote by gM the measure [gM ](A) =M(g−1A). Given a
finitely supported measure µ on Γ, we denote µ ∗M =

∑
g∈Γ µ(g)gM .

We say that M is µ-stationary if µ ∗M = M . The same definition
applies to the special case of a Radon measure λ on a topological space
X that Γ acts on.

A non-negative function f : Γ → [0,∞] can be identified with the
countably additive measure on Γ that assigns to E ⊆ Γ the measure
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g∈E f(g). We overload notation and also denote this measure by f ,

so that f(E) =
∑

g∈E f(g).

3. Proofs

Since Theorem 2 is used in the proof of Theorem 1, we prove the
former first.

3.1. Proof of Theorem 2. Given µ, define the Green functionG : Γ →
[0,∞] by

G(g) =
∞∑
n=0

µ(n)(g).

Since µ generates Γ as a semigroup we have that G > 0. Note that for
every h ∈ Γ there is a constant εh > 0 such that for all k ∈ Γ

εhG
k ≤ hGk ≤ 1

εh
Gk and εhkG ≤ kGh ≤ 1

εh
kG.(3.1)

Lemma 3.1. Let A be a subset of Γ such that G(A) <∞. Then

inf{Gk(A) : k ∈ Γ} = 0.

Proof. Suppose towards a contradiction that inf{Gk(A) : k ∈ Γ} =
c > 0. Then for any m ∈ N

∞∑
n=m

µ(n)(A) =
∞∑
n=0

[µ(n) ∗ µ(m)](A)

=
∞∑
n=0

∑
k∈Γ

µ(n)(Ak) · µ(m)(k−1)

=
∑
k∈Γ

µ(m)(k−1)
∞∑
n=0

µ(n)(Ak)

=
∑
k∈Γ

µ(m)(k−1)Gk(A)

≥ c.

Hence

G(A) =
∞∑
n=0

µ(n)(A) = ∞,

and we have arrived at a contradiction. □
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Recall that a finitely additive measure on Γ is a function M : 2Γ →
[0,∞] such that for all disjoint A,B ⊆ Γ it holds that M(A ∪ B) =

M(A) +M(B). Endow the set [0,∞]2
Γ
of all functions 2Γ → [0,∞]

on subsets on Γ with the product topology, which is compact. Denote
by M ⊂ [0,∞]2

Γ
the set of finitely additive measures. This is a closed

subset, and hence also compact (but not necessarily sequentially com-
pact). Given A ⊆ Γ, the set of measures M ⊆ M such that M(A) = 1
is a closed subset of M.

Denote by Mµ the µ-stationary measures {M ∈ M : µ ∗M =M}.
If µ is finitely supported, then Mµ is closed. To see this, note that

Mµ =
⋂
E⊆Γ

ME
µ ,

where

ME
µ =

{
M ∈ M :

∑
g∈suppµ

µ(g)M(g−1E) =M(E)

}
.

Since µ is finitely supported, membership in ME
µ depends on only

finitely many coordinates (g−1E)g∈suppE. Furthermore, its projection
to these coordinates is a closed subset of [0,∞]suppΓ. Hence each set in
the intersection is closed, and thus their intersection is closed.

By the same argument, for ε > 0 the set of measures

ME,ε
µ =

{
M ∈ M :

∑
g∈suppµ

µ(g)M(g−1E) ∈M(E) + [−ε,+ε]

}

is closed. Clearly, Mµ = ∩E,εME,ε
µ .

Suppose that M ∈ M is a limit point of {M1,M2, . . .}. To show
that M ∈ Mµ (i.e., that M is µ-stationary), it suffices to show that
M ∈ ME,ε

µ for all E ⊆ Γ and ε > 0.

Proof of Theorem 2. As above, the Green function is given by G(g) =∑∞
n=0 µ

(n)(g), and we denote G(A) =
∑

g∈AG(g).

We consider two cases: either G(A) = ∞ or G(A) <∞.
Suppose first that G(A) = ∞. For n ∈ N define the countably

additive measure

Mn(E) =

∑n
m=0 µ

(m)(E)∑n
m=0 µ

(m)(A)
,(3.2)
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and let M be a limit point of {M1,M2, . . .} in the (compact) space of
finitely additive measures on Γ. Since for every E ⊆ Γ

|[µ ∗Mn](E)−Mn(E)| =
|µ(0)(E)− µ(n+1)(E)|∑n

m=0 µ
(m)(A)

≤ 1∑n
m=0 µ

(m)(A)
,

and since the denominator tends to infinity by the assumption that
G(A) = ∞, we have that M ∈ ME,ε

µ for all ε > 0. Since this holds for
every E, M ∈ Mµ.

Consider now the case that G(A) < ∞. In this case the argument
above fails, as taking the limit in (3.2) yields the measure M(E) =
G(E)/G(A), which cannot be stationary (see Remark 3.2). Instead,
we pursue a different approach.

Given k ∈ Γ define the countably additive measure Mk on Γ by

Mk(E) =
Gk(E)

Gk(A)
.

We have by (3.1) that 0 < Gk(A) < ∞, and so Mk is well-defined
with Mk(A) = 1. Note that G − [µ ∗ G] = δe, and more generally
Gk − [µ ∗G]k = δk−1 . Hence

Mk(E)− [µ ∗Mk](E) =
Gk(E)− [µ ∗Gk](E)

Gk(A)
=
δk−1(E)

Gk(A)
.(3.3)

To complete the proof, we need to find a sequence of choices of k such
that this error vanishes. Of course, if we could ensure that Gk(A) tends
to infinity we would achieve this goal; however, this is in general not
possible. Instead, our proof “paradoxically” relies on a sequence with
the opposite property, namely that Gk(A) vanishes (see Remark 3.3).

By Lemma 3.1 there is a sequence k1, k2, . . . in Γ such that Gkn(A) →
0 as n → ∞. Let M be a limit point of {Mk1 ,Mk2 , . . .}. To complete
the proof we show that M(E) = [µ ∗M ](E) for all E ⊆ Γ.
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Consider first the case that M(E) = ∞. By (3.1), it holds for any
k ∈ Γ and E ⊆ Γ that

[µ ∗Mk](E) =
[µ ∗Gk](E)

Gk(A)

=

∑
h µ(h)[hG

k](E)

Gk(A)

≥
∑

h µ(h)εhG
k(E)

Gk(A)

=Mk(E)
∑
h

µ(h)εh.

Hence [µ ∗M ](E) ≥M(E)
∑

h µ(h) = ∞, and so M ∈ ME
µ .

Finally, consider the case that M(E) <∞. Since M is a limit point
of {Mk1 ,Mk2 , . . .}, and since Γ is countable, there is a a subsequence
h1, h2, . . . of k1, k2, . . . such that limnMhn(gE) = M(gE) for all g ∈
Γ. (Since we are working with spaces that might not be sequentially
compact, this subsequence may need to depend on the choice of E. This
does not cause any problems.) In particular, limnMhn(E) =M(E) and
limn[µ ∗Mhn ](E) = [µ ∗M ](E). Since

Gk(E) = G(Ek) =
∑
g

G(g)δg(Ek) ≥ G(e)δe(Ek) = G(e)δk−1(E),

it follows that

lim sup
n

G(e)δh−1
n
(E)

Ghn(A)
≤ lim sup

n

Ghn(E)

Ghn(A)
= lim

n
Mhn(E) =M(E) <∞.

Since limnG
hn(A) = 0 by construction and G(e) > 0, we can conclude

that δh−1
n
(E) = 0 for all n large enough. It then follows from (3.3) that

|[µ ∗Mhn ](E)−Mhn(E)| =
δh−1

n
(E)

Ghn(A)
.(3.4)

But δh−1
n
(E) = 0 for all n large enough, and so

lim
n

|[µ ∗Mhn ](E)−Mhn(E)| = 0.

Hence [µ∗Mhn ](E) =Mhn(E), and M ∈ ME,ε
µ for all ε > 0. Since this

holds for every E, M ∈ Mµ. □

We end this section with two remarks regarding this proof.

Remark 3.2. Note that the measure constructed by taking the limits
in (3.2) may fail to be stationary when the Green function assigns
finite measure to A, and so a different argument is indeed needed in
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that case. For example, consider, as above, the case that µ is the step
distribution of a transient random walk on some group Γ. Suppose
G(A) < ∞. Then the limit M of the measures Mn given by (3.2) is
given by M(E) = G(E)/G(A), where G is the Green function. Since
G vanishes at infinity, it is maximized at some g and hence cannot be
stationary, by the maximum principle.

Remark 3.3. In the case that the Green function G assigns finite
measure to the set A, the error term that needs to be controlled is
δh−1

n
(E)/Ghn(A): we need the limit of this expression to vanish as n

tends to infinity; see (3.4). Of course, this would indeed be the case if
Ghn(A) were to tend to infinity with n. However, we cannot guarantee
that there exists a sequence (hn)n with this property. Instead, we rely
on the existence of a sequence with an opposite property, namely that
Ghn(A) →n 0. As this proof shows, this too works, because along such
a sequence it is guaranteed that the denominator δh−1

n
(E) is eventually

zero.

3.2. Proof of Theorem 1. Given a finitely additive measure M on
Γ, define the subspace

LM = {f ∈ ℓ∞(Γ) : M(supp f) <∞} ⊆ ℓ∞(Γ).

Note that this is not a closed subspace. We equip it with the direct
limit topology induced by the subspaces (ℓ∞(F ))F , where F ranges
over all subsets of Γ such that M(F ) <∞.

Lemma 3.4. Let M be a finitely additive measure on Γ. Then there is
a continuous positive linear functional I : LM → R with I(1E) =M(E)
for all E ⊆ Γ such that M(E) <∞. If M is µ-stationary then I is also
µ-stationary, i.e., [µ ∗ I](f) =

∑
g µ(g)I(g

−1f) = I(f) for all f ∈ LM .

Proof. For each set F ⊆ Γ with M(F ) < ∞, let LF = {f ∈ ℓ∞(Γ) :
supp f ⊆ F}. Notice that the collection {LF}F is partially ordered by
set inclusion, and that

⋃
F LF = LM .

Since the restriction of M to subsets of F is a finite, finitely additive
measure, there exists a unique positive, bounded linear functional on
ℓ∞(F ) that represents M (see, e.g., [1, Corollary 14.11]). Since LF is
isomorphic to ℓ∞(F ) by the restriction map, it follows that there is a
unique positive linear functional IF : → LF such that IF (1E) =M(E)
for all E ⊆ F . Define I : LM → R by I(f) = Isupp f (f). Then I is
linear because if F1 ⊆ F2 then IF2 extends IF1 . It is clear that I is
positive. Continuity in the dual of direct limit topology on LM follows
by construction.
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If M is µ-stationary then∑
g

µ(g)I(g−11E) =
∑
g

µ(g)M(g−1E) = [µ ∗M ](E) =M(E) = I(1E).

The result follows from the linearity of I, and from the fact that simple
functions are dense in ℓ∞. □

Proof of Theorem 1. By assumption, there is a compact K ⊆ X such
that

⋃
g∈Γ gK = X. By perhaps choosing a larger compact set K, we

may assume that
⋃

g∈Γ gK
o = X, where Ko denotes the interior of K.

Fix some x ∈ X. For Y ⊂ X define A(Y ) = {g ∈ Γ : gx ∈ Y }.
Note that the map Y 7→ A(Y ) is equivariant: A(gY ) = gA(Y ). It also
satisfies A(∪iYi) = ∪iA(Yi) and is monotone so that if Y1 ⊆ Y2 then
A(Y1) ⊆ A(Y2).

By Theorem 2, there exists a µ-stationary, finitely additive measure
M on Γ with M(A(K)) = 1. Given f ∈ Cc(X,R), let f̂ ∈ ℓ∞(Γ) be

given by f̂(g) = f(gx). Note that for h ∈ Γ

[̂hf ](g) = [hf ](gx) = f(h−1gx) = f̂(h−1g) = [hf̂ ](g).

Let LM ⊆ ℓ∞(Γ) be the linear space defined in the statement of

Lemma 3.4. We claim that f̂ ∈ LM . To see this, suppose that the
support of f is contained in a compact set K ′ ⊆ X. Then there exists
a finite F ⊆ Γ such that K ′ ⊆

⋃
g∈F gK

o, by compactness and since
gKo is open. Then

supp f̂ = {g ∈ Γ : f(gx) ̸= 0} ⊆M({g ∈ Γ : gx ∈ K ′}) = A(K ′).

Since the map Y 7→ A(Y ) is monotone, it follows that

M(supp f̂) ≤M (A (∪g∈FgK
o))

=M (∪g∈FA(gK
o))

≤
∑
g∈F

M(A(gKo))

=
∑
g∈F

M(gA(Ko)).

By µ-stationarity, for anyE ⊆ Γ and g ∈ Γ,M(gE) ≤ 1
maxn µ(n)(g)

M(E),

which is finite because µ(n)(g) > 0 for some n. Hence

M(supp f̂) ≤ 1

ming∈F maxn µ(n)(g)
· |F | ·M(A(K)) <∞.

Hence f̂ ∈ LM . We further claim that the map f 7→ f̂ is continuous, in
the direct limit topologies on LM and Cc(X,R). This follows from the
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discussion above, which shows that restricted to functions f supported
on some compact K ′ ⊆ X, this map is an isometry into ℓ∞(A(K ′)).

Let I : LM → R be the linear functional established in Lemma 3.4.
We define a linear functional Î : Cc(X,R) → R by Î(f) = I(f̂). We

claim that Î is µ-stationary by the µ-stationarity of I. To see this,
observe that

[µ ∗ Î](f) =
∑
g

µ(g)Î(g−1f) =
∑
g

µ(g)I([̂g−1f ]) =
∑
g

µ(g)I(g−1f̂),

which is equal to I(f̂) (by the µ-stationarity of I), which, by definition,

is equal to Î(f). We claim that Î is continuous in the standard, direct
limit topology on Cc(X,R). This follows from the continuity of I in

the direct limit topology on LM , and the fact that the map f 7→ f̂ is
continuous.

Thus, by the Riesz-Markov-Kakutani representation theorem, there
is a Radon measure λ such that Î(f) =

∫
X
f dλ for any f ∈ Cc(X,R).

We claim λ is µ-stationary and nonzero. Since Î is µ-stationary, we get

λ(E) =

∫
X

1Edλ = Î(1E)

= [µ ∗ Î](1E)

=
∑
g

µ(g)Î(1g−1E)

=
∑
g

µ(g)

∫
X

1g−1Edλ

= [µ ∗ λ](E).

Let ϵ > 0. By outer regularity of λ, there exists an open set U ⊇ K
such that λ(U) ≤ λ(K)+ ϵ. Because Cc(X,R) is ℓ∞ dense in the space
of functions X → R, there exists a function f ∈ Cc(X,R) such that

1K ≤ f ≤ 1U . Then f̂ ≥ 1̂K = 1A(K) whence

Î(f) = I(f̂) ≥ I(1A(K)) =M(A(K)) = 1.

Then

λ(K) + ϵ ≥ λ(U) = Î(1U) ≥ Î(f) ≥ 1.

Choosing any 0 < ϵ < 1, we find that λ(K) > 0. In particular, λ is
nontrivial. □
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3.3. µ-light subsets of Γ. For d ≥ 2, let Γ = Fd = ⟨S⟩ be the free
group generated by S = {a1, . . . , ad}. Denote the geometric boundary
of Fd by ∂Γ. This is the set of infinite reduced words s1s2 · · · ∈ (S ∪
S−1)N, where each si ∈ S ∪ S−1, and si ̸= s−1

i+1. Each w ∈ ∂Γ defines a
geodesic in the Cayley graph defined by S, starting at e ∈ Γ and given
by (e, s1, s1s2, s1s2s3, . . .).

Given w = s1s2 · · · ∈ ∂Γ and g ∈ Γ, denote the distance between g
and the geodesic defined by w

D(g, w) = min
i≥0

|g−1 · s1s2 · · · si|.

Here | · | denotes the word length norm on Γ defined by the generating
set S. We can identify w with the function fw : Γ → R given by

fw(g) = (2d− 1)|g
−1|−2D(g−1,w).(3.5)

This is the function that attains the value (2d − 1)i on the inverse of
the ith element of the geodesic defined by w, and decays exponentially
by a factor of 2d− 1 as one moves away from this geodesic (in the left
Cayley graph). Note that fw is positive and (left) µ-harmonic.

The functions {fw}w∈∂Γ form the Martin boundary of the µ-random
walk on Γ (see, e.g., [2]). This implies that they contain (and, in the
case of the free group, are equal to) the extreme points of the set of pos-
itive µ-harmonic functions that attain unity at the identity. Hence, for
every positive µ-harmonic function f there exists a probability measure
ζ on ∂Γ such that

f = f(e)

∫
∂Γ

fw dζ(w).

It follows that if f(A) < ∞ then fw(A) < ∞ for ζ-almost every w. In
particular, there is some w such that fw(A) < ∞. Thus, if A ⊆ Γ is
µ-light, this is witnessed by some fw satisfying fw(A) <∞. So to show
that A is not µ-light it suffices to show that fw(A) = ∞ for all w ∈ ∂Γ.
Consider the set A = σ(Γ), where σ : Γ → Γ is given by (1.1) (or any

other function satisfying the conditions in the paragraph before (1.1)).
Since |σ(g)| = 2|g|, we have that |A ∩ B2r| = |Br| = (2d)(2d − 1)r−1.
Hence g = g =

√
2d− 1. Given any w = s1s2 · · · ∈ ∂Γ, let gi =

(s1s2 · · · si)−1, note that |σ(gi)| = 2i, and that D(g−1
i , w) ≤ i. Hence

fw(σ(gi)) ≥ 1 and since σ(gi) ∈ A, fw(A) ≥
∑

i≥1 fw(σ(gi)) = ∞. This
completes the proof of Claim 1.2.

Proof of Proposition 1.1. Let ζ be the hitting measure of the µ-random
walk on ∂Γ, also known as the harmonic measure on ∂Γ. This is the
probability measure in which we draw w = s1s2 · · · by choosing s1
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uniformly at random from S ∪ S−1, and conditioned on s1, s2, . . . , si,
choose si+1 uniformly from (S ∪ S−1) \ s−1

i . Formally, given a finite
reduced word t1t2 · · · tn with each ti ∈ S ∪ S−1,

ζ({w = s1s2 · · · : s1 = t1, . . . , sn = tn}) = 1/
(
2d · (2d− 1)n−1

)
.

Suppose g(A) <
√
2d− 1. We claim that for ζ-almost every w it

holds that fw(A) < ∞, which in particular proves that there exists a
measure with the required properties, so that A is µ-light. To this end,
we show that ∫

∂Γ

∑
g∈A

√
fw(g) dζ(w) <∞.(3.6)

This implies that
∑

g∈A

√
fw(g) < ∞, ζ-almost surely, which implies

that fw(A) =
∑

g∈A fw(g) <∞, ζ-almost surely.

Denote Sr = {g ∈ Γ : |g| = r}. Fix some g ∈ Sr. Then∫
∂Γ

√
fw(g) dζ(w) =

1

|Sr|
∑
h∈Sr

√
fw(h),(3.7)

for any w ∈ ∂Γ, by the spherical symmetry of the measure ζ.
Now, on Sr, fw attains its maximum (2d− 1)r at the single point h0

which coincides with the r-prefix of w. At any other point h,

fw(h) = fw(h0)(2d− 1)−|hh−1
0 | = (2d− 1)r−|hh−1

0 |,

Now, the number of elements h ∈ Sr such that |hh−1
0 | = t is 0 if t is

odd or larger than 2r, and (2d− 1)t/2 otherwise. Hence∑
h∈Sr

√
fw(h) =

∑
t∈{0,2,...,2r}

|Sr ∩ {h : |hh−1
0 | = t}|(2d− 1)r/2−t/2

=
∑

t∈{0,2,...,2r}

(2d− 1)t/2(2d− 1)r/2−t/2

= (2d− 1)r/2r,

so that

1

|Sr|
∑
h∈Sr

√
fw(h) = 2d(2d− 1)−(r−1)(2d− 1)r/2r = 2d(2d− 1)−r/2+1r.
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It follows by (3.7) that∫
∂Γ

∑
g∈A

√
fw(g) dζ(w) =

∑
r

∑
g∈A∩Sr

∫
∂Γ

√
fw(g) dζ(w)

=
∑
r

∑
g∈A∩Sr

2d(2d− 1)−r/2+1r

=
∑
r

|A ∩ Sr|2d(2d− 1)−r/2+1r,

which is finite if g <
√
2d− 1. Thus (3.6) holds and the proof is

complete. □

3.4. Necessity of co-compactness in Theorem 1. Recall from §1.1
that A ⊆ Γ is µ-light if f(A) =

∑
g∈A f(g) <∞ for some positive, left

µ-harmonic f .

Lemma 3.5. Let X be a locally compact Hausdorff Γ-space. Suppose
that there exists a sequence of compact subsets Kn ⊆ X, and a sequence
of subsets An ⊆ Γ with the following properties:

(i) Each An is not µ-light.
(ii) (g−1Kn)g∈An are pairwise disjoint subsets of Kn+1.
(iii) X = ∪n ∪g∈Γ gKn.

Then there is no nonzero µ-stationary Radon measure on X.

Proof. Suppose λ is a µ-stationary Radon measure on X. Since λ is
Radon and Kn is compact, λ(Kn) < ∞. Note that f(g) = λ(gKn) is
(left) µ-harmonic. Suppose λ(Kn) > 0, so that f is positive. Then (i)
implies that ∑

g∈An

λ(gKn) = f(An) = ∞.

But then, by (ii), λ(Kn+1) ≥
∑

g∈An
λ(gKn) = ∞, which is impossible

because λ is Radon. Hence we have that f = 0, and so also λ(gKn) = 0
for all g ∈ Γ. Finally, by (iii), λ(X) ≤

∑
n,g∈An

λ(gKn) = 0. □

Lemma 3.6. There exist subsets A1, A2, . . . of Fd such that, for every
n, e ∈ An, each An is not µ-light, and the map ψn : A1 × · · · ×An → Γ
given by ψn(g1, . . . , gn) = g1 · · · gn is injective.

Proof. Recall that we denote by Sr the set of elements {g ∈ Γ : |g| =
r}, where | · | is the standard word length norm. Let a be one of the
d generators of Γ, so that µ(a) = 1/(2d), and let Aa

a ⊂ Γ be the set of
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reduced words that begin and end with a. Note that for g, h ∈ Aa
a it

holds that

|gh| = |g|+ |h|.(3.8)

Let r : N2 → N be an injection, and let

An = ∪∞
m=1(A

a
a ∩ S2r(n,m)) ∪ {e}.

By (3.8), if (g1, . . . , gn) ∈ A1×· · ·×An then |g1 · · · gn| = |g1|+· · ·+|gn|,
and so, by the definition of (An)n, g1 · · · gn determines each |gi|; indeed,
|gi| can be recovered from the binary representation of |g1 · · · gn|. And
since by the definition of Aa

a there cannot be any cancellations in the
product g1 · · · gn, this product determines (g1, · · · , gn). Hence ψn is
injective.

It remains to be shown that An is not µ-light. To this end we proceed
as in the proof of Claim 1.2, and complete the proof by showing that
fw(An) = ∞ for every w ∈ ∂Γ. Indeed, fw(g) ≥ (2d− 1)−|g|, by (3.5).
Now, |Aa

a ∩ Sr| ≥ (2d − 1)r−3, since Aa
a only fixes the first and last

letter. Hence fw(g)(A
a
a ∩ Sr) ≥ (2d− 1)−3, and thus fw(An) = ∞.

□

Given these lemmas, the proof of Proposition 1.4 follows the con-
struction in [8, Proposition 4.3].

Proof of Proposition 1.4. Let A1, A2, . . . be a sequence furnished by
Lemma 3.6. We define Bn = ψn(A1, . . . , An) = A1 · · ·An. Note that
this sequence is increasing, since e ∈ An. Let A be the boolean algebra
generated by (An)n, (Bn)n, and by their translates by elements of Γ.
Let S be the Stone space associated with A. Since A is countable, S is
second countable, and moreover isomorphic to the Cantor space. And
since A admits a Γ-action by translations, so does S.
Given A ∈ A, denote by K(A) ⊆ S the natural identification of A

with the subset of S consisting of the ultrafilters that contain A. Note
that K(A) is compact and open. Note also that if A,B ∈ A are disjoint
then K(A) and K(B) are disjoint.

Let

X =
⋃
n

⋃
g∈Γ

gK(Bn).

Note thatX, as a countable union of compact open sets, is an open sub-
set of S, and hence locally compact, second countable and σ-compact.
It is also invariant to the G-action, by construction.

We now show that Kn = K(Bn) ⊆ X and An ⊆ Γ satisfy the con-
ditions of Lemma 3.5, which will complete the proof. Note that (i)
is satisfied by our choice of An. Further, if g, h are distinct elements
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of An+1, then gBn and hBn are disjoint, by the injectivity of ψn. It
follows that gKn = gK(Bn) = K(gBn) and hKn are disjoint, which
shows (ii). Finally, (iii) follows immediately from the definition of X.

□
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