HIGHER DERIVATIVES
BASED ON LECTURE NOTES BY JAMES MCKERNAN

We first record a very useful fact:

Theorem 1. Let A C R™ be an open subset. Let f: A — R™ and g: A — R™ be
two functions and suppose that p € A. Let A € A be a scalar.

If f and g are differentiable at p, then

(1) f+ g is differentiable at p and D(f + g)(p) = Df(p) + Dyg(p).
(2) A f is differentiable at p and D(\f)(p) = AD(f)(p).
Now suppose that m = 1.
(3) fg is differentiable at p and D(fg)(p) = D(f)(p)g(p) + f(p)D(9)(p)-
(4) If g(p) # 0, then fg is differentiable at p and
D(f)(p)g(p) — f(p)D(9)(p)
D(f/9)(p) () -

If the partial derivatives of f and g exist and are continuous, then (1) follows
from the well-known single variable case. One can prove the general case of (1), by
hand (basically lots of €’s and §’s). However, perhaps the best way to prove (1) is
to use the chain rule, proved in the next section.

What about higher derivatives?

Blackboard 2. Let A C R™ be an open set and let f: A — R be a function.

The kth order partial derivative of f, with respect to the variables z;,, ©;,,
... x5, 15 the iterated derivative
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We will also use the notation f, 2, ., (p).

)+ ))(p)-

Example 3. Let f: R? = R be the function f(z,t) = e~ cosx.
Then

0,0, _,
foz(z,t) = %(%(e cosx))
= Q —e “ging
ox
= —e “cosz.
On the other hand,
0,0, _,
Jat(w,1) = %(a(e tcosz))
= é%(—ae_at cosx)
= ae “sinz.
Similarly,
0,0, _,
fro(z,t) = a(%(e tcosz))
= %(—e“” sin x)

t

=qae “sinzx.
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Note that
fi(x,t) = —ae” " cosx.

It follows that f(x,t) is a solution to the Heat equation:
*f _of

Y002 " ot
Blackboard 4. Let A C R" be an open subset and let f: A — R™ be a function.
We say that f is of class C* if all kth partial derivatives exist and are continuous.

We say that f is of class C> (aka smooth) if f is of class C* for all k.
In lecture 10 we saw that if f is C', then it is differentiable.

Theorem 5. Let A C R™ be an open subset and let f: A — R™ be a function.
If f is C2, then
o*f 0%f

83:‘83:] a 81;]8951 ’

forall1 <i,5 <n.

The proof uses the Mean Value Theorem.
Suppose we are given A C R an open subset and a function f: A — R of class
Cl. The objective is to find a solution to the equation

flx)y=0.

Newton’s method proceeds as follows. Start with some xzg € A. The best linear
approximation to f(z) in a neighbourhood of z is given by

f(@o) + f'(z0)(z — 20).
If f'(x0) # 0, then the linear equation

f(zo) + f'(w0)(z — z0) =0,
has the unique solution,
o — (o)
f'(@o)
Now just keep going (assuming that f’(x;) is never zero),
o — f(zo)
f'(@o)
f(z1)
f'(@1)

1 =

xr1 =2

To =1 —

Claim 6. Suppose that T = limy, o T, exists and f'(zso) # 0.
Then f(re) = 0.

Proof of (6). Indeed, we have



Take the limit as n goes to oo of both sides:

e — o f(z)
oo o0 f/(moo) I
we used the fact that f and f’ are continuous and f/(zs) # 0. But then
f(xoo) =0,
as claimed. ([l

Suppose that A C R™ is open and f: A — R" is a function. Suppose that f is
C' (that is, suppose each of the coordinate functions fi,..., f, is C!).
The objective is to find a solution to the equation

f(p) =0.
Before we do this, we’ll need to define determinants and inverses of matrices.

Blackboard 7. The identity n-by-n matriz I,, has 1’s on the diagonal and zeros
elsewhere. Let A be an n-by-n matriz.

Claim: TA = Al = A.

An n-by-n matriz B is an “inverse of A7 if AB = BA=1. A is “invertible” if

it has an inverse.
Blackboard 8. Let
a b
)
The determinant of A, det A, is ad — be.
Claim 9. Ifdet A # 0 then

1 d —b
B = .
det A (—c a )

Blackboard 10. One can also define determinants for nxn matrices. It is probably
easiest to explain the general rule using an example:

1 0 0 2

is the unique inverse of A.

0 1 -1 2 0 1
201_1:—21 1]—-201 -2 1f.
=211 1 0 1 0 1 0
0 1 0 1

Notice that we as expand about the top row, the sign alternates + — +—, so that the
last term comes with a minus sign.

Claim 11. Let A be an n-by-n matriz. If det A # 0 then A has a unique inverse.

Back to solving f(p) = 0. Start with any point po € A. The best linear approx-
imation to f at pg is given by

f(o) + D f (po) DD

Assume that D f(pg) is an invertible matrix, that is, assume that det D f(pg) # 0.
Then the inverse matrix Df(pg)~! exists and the unique solution to the linear
equation

f(po) + D f(po)ppi = 0,



is given by
p1=po — Df(po)~" f(po)-

Notice that matrix multiplication is not commutative, so that there is a difference
between D f(po)~f(po) and f(po)Df(po)~!t. If possible, we get a sequence of
solutions,

p1=po — Df(po)~" f(po)
p2=p1 — Df(p1) " f(m)

Pn = Pn—1 — Df(pnfl>_1f(pn71)-

Suppose that the limit poo = lim, o Py, exists and that D f(ps) is invertible.
As before, if we take the limit of both sides, this implies that

f(pc) = 0.
Let us try a concrete example.
Example 12. Solve
%+ y2 =1
y? =2

First we write down an appropriate function, f: R? — R2, given by f(z,y) =
(22 + y? — 1,52 — 2®). Then we are looking for a point p such that

f(p) = (0,0).

o) = (e 3Y).

Then

The determinant of this matrix is
day 4 622y = 2xy(2 + 32).
Now if we are given a 2 X 2 matrix
(¢
c dj)’

then we may write down the inverse by hand,

1 d -b
ad—bc\—c a )’

S
° D 1 1 2u 2y
So,
_ B 1 2y —2y\ (22 +y>—1
Df(p) 1f(p)2xy(2+3x)<3$2 233) ( yz—x3 )

_ 1 222y — 2y + 223y
T 2xy(2 4 3x) \@* + 32%y? — 322 + 22>



5

One nice thing about this method is that it is quite easy to implement on a
computer. Here is what happens if we start with (zg, y0) = (5, 2),

(x0,y0) = (5.00000000000000, 2.00000000000000)

(z1,y1) = (3.24705882352941, —0.617647058823529)

(z2,y2) = (2.09875150983980, 1.37996311951634)

(x3,y3) = (1.37227480405610, 0.561220968705054)

( ) = (0.959201654346683, 0.503839504009063)
(x5,y5) = (0.787655203525685, 0.657830227357845)
(z6,ys) = (0.755918792660404, 0.655438554539110),

and if we start with (zo,y0) = (5,5),

(5.00000000000000, 5.00000000000000)

(3.24705882352941, 1.85294117647059)

(2.09875150983980, 0.363541705259258)

(1.37227480405610, —0.306989760884339)

(

(

T4,Y4

(
(SCO, yo)
(w1,91)
(z2,y2)
(73,93)
(z4,y4) 0.959201654346683, —0.561589294711320)
(z5,y5) 0.787655203525685, —0.644964218428458)
(z6,y6) = (0.755918792660404, —0.655519172668858).

One can sketch the two curves and check that these give reasonable solutions.

Omne can also check that (zg,ys) lie close to the two given curves, by computing

3+ yg — 1 and y2 — 3.



