
Taylor Polynomials
Based on lecture notes by James McKernan

If f : A −→ Rm is a differentiable function, and we are given a point p ∈ A, one
can use the derivative to write down the best linear approximation to f at p. It
is natural to wonder if one can do better using quadratic, or even higher degree,
polynomials. We start with the one dimensional case.

Blackboard 1. Let I ⊂ R be an open interval and let f : I −→ R be a Ck-function.
Given a point a ∈ I, let

Pa,kf(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ fk(a)

k!
(x− a)k

=

k∑
i=0

f i(a)

i!
(x− a)i.

Then Pa,kf(x) is the kth Taylor polynomial of f , centred at a. The remainder
is the difference

Ra,kf(x) = f(x)− Pa,kf(x).

Note that we have chosen Pa,kf so that the first k derivatives of Pa,kf at a are
precisely the same as those of f . In other words, the first k derivatives at a of
the remainder are all zero. The remainder is a measure of how good the Taylor
polynomial approximates f(x) and so it is very useful to estimate Ra,k(x).

Theorem 2 (Taylor’s Theorem with remainder). Let I ⊂ R be an open interval
and let f : I −→ R be a Ck+1-function. Let a and b be two points in I.

Then there is a ξ between a and b, such that

Ra,kf(b) =
fk+1(ξ)

(k + 1)!
(b− a)k+1.

Before proving this we will need:

Theorem 3 (Mean value theorem). Let f : [a, b] → R is continuous and differen-
tiable at every point of (a, b), then we may find c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof of Theorem 2. If a = b then take ξ = a. The result is clear in this case.
Otherwise if we put

M =
Ra,kf(b)

(b− a)k+1
,

then

Ra,kf(b) = M(b− a)k+1.

We want to show that there is some ξ between a and b such that

M =
fk+1(ξ)

(k + 1)!
.

If we let

g(x) = Ra,k(x)−M(x− a)k+1,

then

gk+1(x) = fk+1(x)− (k + 1)!M.
1
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Then we are looking for ξ such that

gk+1(ξ) = 0.

Now the first k derivatives of g at a are all zero,

gi(a) = 0 for 0 ≤ i ≤ k.

By choice of M ,

g(b) = 0.

So by the mean value theorem, applied to g(x), there is a ξ1 between a and b such
that

g′(ξ1) = 0.

Again by the mean value theorem, applied to g′(x), there is a ξ2 between a and ξ1
such that

g′′(ξ2) = 0.

Continuing in this way, by induction we may find ξi, 1 ≤ i ≤ k + 1 between a and
ξi−1 such that

gi(ξi) = 0.

Let ξ = ξk+1. �

Let’s try an easy example. Start with

f(x) = x1/2

f ′(x) =
1

2
x−1/2

f ′′(x) =
1

22
x−3/2

f ′′′(x) =
3

23
x−5/2

f4(x) = −1 · 3 · 5
24

x−7/2

f5(x) =
1 · 3 · 5 · 7

25
x−9/2

f6(x) = −1 · 3 · 5 · 7 · 9
26

x−11/2

fk(x) = (−1)k−1
(2k − 1)!!

2k
x−(2k−1)/2

fk(9/4) = (−1)k−1
(2k − 1)!!

2k
22k−1

32k−1

= (−1)k−1
(2k − 1)!!2k−1

32k−1
.

Let’s write down the Taylor polynomial centred at a = 9/4.

P9/4,5f(x) = f(9/4)+f ′(9/4)(x−9/4)+f ′′(9/4)/2(x−9/4)2+f ′′′(9/4)/6(x−9/4)3

f4(9/4)/24(x− 9/4)4 + f5(9/4)/120(x− 9/4)5.
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So,

P9/4,5f(x) = 3/2 + 1/3(x− 9/4)− 1/33(x− 9/4)2 + 2/35(x− 9/4)3

− 1 · 3 · 5 · 23

24 · 37
(x− 9/4)4 +

1 · 3 · 5 · 7 · 24

120 · 39
(x− 9/4)5.

If we plug in x = 2, so that x − 9/4 = −1/4 we get an approximation to

f(2) =
√

2.

P9/4,3(2) = 3/2 + 1/3(−1/4)− 1/33(1/4)2 − 2/35(1/4)3 =
10997

7776
≈ 1.41422 . . . .

On the other hand,

|R3(2, 9/4)| = 1 · 3
4!

(ξ)−7/2(1/4)4 <
1 · 3
4!

(1/2) = 1/16.

In fact

|R3(2, 9/4)| = 10997

7776
−
√

2 ≈ 4× 10−6.

Blackboard 4. Let A ⊂ Rn be an open subset which is convex (if ~a and ~b belong
to A, then so does every point on the line segment between them). Suppose that
f : A −→ R is Ck.

Given ~a ∈ A, the kth Taylor polynomial of f centred at a is

P~a,kf(~x) = f(~a) +
∑

1≤i≤n

∂f

∂xi
(~a)(xi − ai) + 1/2

∑
1≤i,j≤n

∂2f

∂xi∂xj
(~a)(xi − ai)(xj − aj) + . . .

+
1

k!

∑
1≤i1,i2,...,ik≤n

∂kf

∂xi1∂xi2 . . . ∂xik
(~a)(xi1 − ai1)(xi2 − ai2) . . . (xik − aik).

The remainder is the difference

R~a,kf(~x) = f(~x)− P~a,kf(~x).

Theorem 5. Let A ⊂ Rn be an open subset which is convex. Suppose that f : A −→
R is Ck+1, and let ~a and ~b belong to A.

Then there is a vector ~ξ on the line segment between ~a and ~b such that

R~a,k(~b) =
1

(k + 1)!

∑
1≤l1,l2,...,lk+1≤n

∂k+1f

∂xi1∂xi2 . . . ∂xik+1

(~ξ)(bi1−ai1)(bi2−ai2) . . . (bik+1
−aik+1

).

Proof. As A is open and convex, we may find ε > 0 so that the parametrised line

~r : (−ε, 1 + ε) −→ Rn given by ~r(t) = ~a+ t(~b− ~a),

is contained in A. Let

g : (−ε, 1 + ε) −→ R,

be the composition of ~r(t) and f(~x).

Claim 6.

P0,kg(t) = P~a,kf(~r(t)).
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Proof of (6). This is just the chain rule;

g′(t) =
∑

1≤i≤n

∂f

∂xi
(~r(t))(bi − ai)

g′′(t) =
∑

1≤i≤j≤n

∂2f

∂xi∂xj
(~r(t))(bi − ai)(bj − aj)

and so on. �

So the result follows by the one variable result. �

We can write out the first few terms of the Taylor series of f and get something

interesting. Let ~h = ~x− ~a. Then

P~a,2f(x) = f(~a) +
∑

1≤i≤n

∂f

∂xi
(~a)hi + 1/2

∑
1≤i,j≤n

∂2f

∂xi∂xj
(~a)hihj .

The middle term is the same as multiplying the row vector formed by the gradient
of f ,

∇f(~a) = (
∂f

∂x1
(~a),

∂f

∂x2
(~a), . . .

∂f

∂xn
(~a)),

and the column vector given by ~h. The last term is the same as multiplying the
matrix with entries

∂2f

∂xi∂xj
(~a),

on the left by ~h and on the right by the column vector given by ~h and dividing by
2.

The matrix

Hf(~a) = (hij) =

(
∂2f

∂xi∂xj
(~a)

)
,

is called the Hessian of f(~x).
We have then

P~a,2f(x) = f(~a) +∇f(~a) · ~h+ 1
2
~h · (Hf(~a) · ~h).


