TAYLOR POLYNOMIALS
BASED ON LECTURE NOTES BY JAMES MCKERNAN

If f: A— R™ is a differentiable function, and we are given a point p € A, one
can use the derivative to write down the best linear approximation to f at p. It
is natural to wonder if one can do better using quadratic, or even higher degree,
polynomials. We start with the one dimensional case.

Blackboard 1. Let I C R be an open interval and let f: I — R be a C*-function.
Given a point a € I, let
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Poif(x) = f(a) + f'(a)(x - a) + (z—a)®+

Then P, 1 f(x) is the kth Taylor polynomial of f, centred at a. The remainder
is the difference

Rayf(z) = f(@) = Parf().

Note that we have chosen P, j f so that the first £ derivatives of P, i f at a are
precisely the same as those of f. In other words, the first k£ derivatives at a of
the remainder are all zero. The remainder is a measure of how good the Taylor
polynomial approximates f(z) and so it is very useful to estimate R, k().

Theorem 2 (Taylor’s Theorem with remainder). Let I C R be an open interval
and let f: I — R be a C*T-function. Let a and b be two points in I.
Then there is a £ between a and b, such that

k+1
Rapf0) = 5 0= .

Before proving this we will need:

Theorem 3 (Mean value theorem). Let f: [a,b] — R is continuous and differen-
tiable at every point of (a,b), then we may find ¢ € (a,b) such that

fb) = fla) = f'(e)(b - a).

Proof of Theorem 2. If a = b then take £ = a. The result is clear in this case.
Otherwise if we put

_ Ra,k:f(b)
M= (b _ a)k+1’
then
Rainf(b) = M(b—a)*!.

We want to show that there is some £ between a and b such that

A
M=o
If we let
g(x) = Rop(x) — M(z — a)]”l,
then

g (@) = @) — (k+ 1)IM.
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Then we are looking for £ such that
g"rE) =o.
Now the first k derivatives of g at a are all zero,
g'(a) =0 for 0<i<k.
By choice of M,
g(b) =0.

So by the mean value theorem, applied to g(x), there is a &; between a and b such
that

g'(&1) =0.

Again by the mean value theorem, applied to ¢g’(x), there is a {& between a and &;
such that

g" (&) =0.

Continuing in this way, by induction we may find §;, 1 < ¢ < k + 1 between a and
&;_1 such that

gi(fz') =0.
Let § = k1. U

Let’s try an easy example. Start with
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Let’s write down the Taylor polynomial centred at a = 9/4.

Posasf(x) = F(9/4)+F(9/4)(x—=9/4)+f"(9/4)/2(x—=9/4)*+ " (9/4) /6(z—9/4)®
£49/4)/24(x — 9/4)* + £5(9/4)/120(x — 9/4)°.



So,

Pyusf(z) =3/2+1/3(x —9/4) — 1/3%(z — 9/4)* + 2/3%(z — 9/4)*

3 4
- 17'234'_53'72 (w—9/ayt 4 L30T 2 ‘?2(‘;’ - ;9' 2 (o - 9/4).
If we plug in z = 2, so that * — 9/4 = —1/4 we get an approximation to
f(2)= V2.
Pysu3(2) =3/241/3(—1/4) — 1/3%(1/4)* — 2/3°(1/4)® = % ~1.41422. ...

On the other hand,

1-3 1-3
|R3(2,9/4)| = 7(5)4/2(1/4)4 < T(l/Q) = 1/16.
In fact
10997
R5(2,9/4)| = —— — V2=~ 4 x 107,
[Ra(2,9/4)] = - — V4 x

Blackboard 4. Let A C R™ be an open subset which is convex (if @ and b belong
to A, then so does every point on the line segment between them). Suppose that
f:A—RisCF.
Given a € A, the kth Taylor polynomial of f centred at a is
0% f
&m—&x]—

Payf (@)= f@)+ )
1<i<n
1 ok f _
+E Z Ox;, 0z, ... Oy, (a’)(xil = aiy) (@i, — aiy) - (@), — a’ik)‘

T 1<, ig,e ik <0

(@)(zi —a;) +1/2 Z

1<i,j<n

ox; (@) (v — a;)(z; —az) + ...

The remainder is the difference
Rax f(Z) = f(£) — P i f(Z).

Theorem 5. Let A C R™ be an open subset which is convex. Suppose that f: A —>
R is C**1, and let @ and b belong to A.
Then there is a vector £ on the line segment between @ and b such that

. 1 ok+1 .
Ran(b) = _— L (&b —a) (b —aiy) ... (big iy ).

(k; + 1). 1<l o disa <n 8xi16xi2 .. 8l‘ik+1

Proof. As A is open and convex, we may find € > 0 so that the parametrised line

—

7 (—e,14+€) — R” given by 7(t) =a+tb—a),

is contained in A. Let
g: (—,1+¢€) — R,

—

be the composition of 7(t) and f(Z).
Claim 6.
Porg(t) = Parf(r(t)).
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Proof of (6). This is just the chain rule;

1<i<n
>’ f
g// (t) - axax (t))(bl al)(bj CL])
1<i<j<n V7
and so on. [
So the result follows by the one variable result. (|

We can write out the first few terms of the Taylor series of f and get something
interesting. Let h = # — d. Then

Paaf(x) = f@+ ) §f< hit1/2 )

1<i<n 1<i,5<n

8:@8% (@)hih;.

The middle term is the same as multiplying the row vector formed by the gradient

of .
VI@ = L@, @, @)

and the column vector given by h. The last term is the same as multiplying the
matrix with entries
Ff
—— (@),
00

on the left by h and on the right by the column vector given by h and dividing by
2.

The matrix

. *Pf
Hf(d@) = (hij) = (M(G)> )
0T
is called the Hessian of f(&).
We have then

Paof(x) = f(@)+ Vf(@) - h+ Lh- (Hf(@) - h).



