
Maxima and minima: II
Based on lecture notes by James McKernan

To see how to maximize and minimize a function on the boundary, let’s conside
a concrete example.

Let
K = { (x, y) |x2 + y2 ≤ 2 }.

Then K is compact. Let
f : K −→ R,

be the function f(x, y) = xy. Then f is continuous and so f achieves its maximum
and minimum.

I. Let’s first consider the interior points. Then

∇f(x, y) = (y, x),

so that (0, 0) is the only critical point. The Hessian of f is

Hf(x, y) =

(
0 1
1 0

)
.

d1 = 0 and d2 = −1 6= 0 so that (0, 0) is a saddle point.
It follows that the maxima and minima of f are on the boundary, that is, the

set of points
C = { (x, y) |x2 + y2 = 2 }.

II. Let g : R2 −→ R be the function g(x, y) = x2 + y2. Then the circle C is a
level curve of g. The original problem asks to maximize and minimize

f(x, y) = xy subject to g(x, y) = x2 + y2 = 2.

One way to proceed is to use the second equation to eliminate a variable. The
method of Lagrange multipliers does exactly the opposite. Instead of eliminating a
variable we add one more variable, traditionally called λ.

In general, say we want to maximize f(x, y) subject to g(x, y) = c. Then at a
maximum point p it won’t necessarily be the case that ∇f(p) = 0, but it will be
the case that the directional derivative ∇f(p) · n̂ will be zero for any n̂ that is in
the direction of the level set g(x, y) = c. Since ∇g is orthogonal to this level set, at
a maximum point p it will be the case that ∇f(p) and ∇g(p) will be at the same
direction, or that ∇f(p) = λ∇g(p) for some λ.

Consider the function

h(x, y, λ) = f(x, y)− λ(g(x, y)− c).
Let’s see what happens at points where∇h = 0. Taking the derivatives with respect
to x and y and equating to zero yields

∇f(x, y)− λ∇g(x, y) = 0,

which is what we’re looking for. Taking the derivative with respect to λ and equat-
ing to zero yields

g(x, y) = c,

which is the second condition we need. Hence finding a point in which ∇h = 0 is
the same as solving our problem.

So now let’s maximize and minimize

h(x, y, λ) = f(x, y)− λ(g(x, y)− 2) = xy − λ(x2 + y2 − 2).
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We find the critical points of h(x, y, λ):

y = 2λx

x = 2λy

2 = x2 + y2.

First note that if x = 0 then y = 0 and x2 + y2 = 0 6= 2, impossible. So x 6= 0.
Similarly one can check that y 6= 0 and λ 6= 0. Divide the first equation by the
second:

y

x
=
x

y
,

so that y2 = x2. As x2 + y2 = 2 it follows that x2 = y2 = 1. So x = ±1 and
y = ±1. This gives four potential points (1, 1), (−1, 1), (1,−1), (−1,−1). Then
the maximum value of f is 1, and this occurs at the first and the last point. The
minimum value of f is −1, and this occurs at the second and the third point.

One can also try to parametrize the boundary:

~r(t) =
√

2(cos t, sin t).

So we maximize the composition

h : [0, 2π] −→ R,

where h(t) = 2 cos t sin t. As I = [0, 2π] is compact, h has a maximum and minimum
on I. When h′(t) = 0, we get

cos2 t− sin2 t = 0.

Note that the LHS is cos 2t, so we want

cos 2t = 0.

It follows that 2t = π/2 + 2mπ, so that

t = π/4, 3π/4, 5π/4, and 7π/4.

These give the four points we had before.
What is the closest point to the origin on the surface

F = { (x, y, z) ∈ R3 |x ≥ 0, y ≥ 0, z ≥ 0, xyz = p }?

So we want to minimize the distance to the origin on F . The first trick is to
minimize the square of the distance. In other words, we are trying to minimize
f(x, y, z) = x2 + y2 + z2 on the surface

F = { (x, y, z) ∈ R3 |x ≥ 0, y ≥ 0, z ≥ 0, xyz = p }.

In words, given three numbers x ≥, y ≥ 0 and z ≥ 0 whose product is p > 0, what
is the minimum value of x2 + y2 + z2?

Now F is closed but it is not bounded, so it is not even clear that the minimum
exists.

Let’s use the method of Lagrange multipliers. Let

h : R4 −→ R,

be the function

h(x, y, z, λ) = x2 + y2 + z2 − λ(xyz − p).
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We look for the critical points of h:

2x = λyz

2y = λxz

2z = λxy

p = xyz.

Once again, it is not possible for any of the variables to be zero. Taking the
product of the first three equations, we get

8(xyz) = λ3(x2y2z2).

So, dividing by xyz and using the last equation, we get

8 = λ3p,

that is

λ =
2

p1/3
.

Taking the product of the first two equations, and dividing by xy, we get

4 = λ2z2,

so that

z = p1/3.

So h(x, y, z, λ) has a critical point at

(x, y, z, λ) = (p1/3, p1/3, p1/3,
2

p1/3
).

We check that the point

(x, y, z) = (p1/3, p1/3, p1/3),

is a minimum of x2 + y2 + z2 subject to the constraint xyz = p. At this point the
sum of the squares is

3p2/3.

Suppose that x ≥ 2p1/3. Then the sum of the squares is at least 4p2/3. Similarly
if y ≥ 2p1/3 or z ≥ 2p1/3. On the other hand, the set

K = { (x, y, z) ∈ R3 |x ∈ [0, 2p1/3], y ∈ [0, 2p1/3], z ∈ [0, 2p1/3], xyz = p },

is closed and bounded, so that f achieves it minimum on this set, which we have
already decided is at

(x, y, z) = (p1/3, p1/3, p1/3),

since f is larger on the boundary. Putting all of this together, the point

(x, y, z) = (p1/3, p1/3, p1/3),

is a point where the sum of the squares is a minimum.
Here is another such problem. Find the closest point to the origin which also

belongs to the cone

x2 + y2 = z2,

and to the plane

x+ y + z = 3.
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As before, we minimize f(x, y, z) = x2+y2+z2 subject to g1(x, y, z) = x2+y2−z2 =
0 and g2(x, y, z) = x+ y+ z = 3. Introduce a new function, with two new variables
λ1 and λ2,

h : R5 −→ R,
given by

h(x, y, z, λ1, λ2) = f(x, y, z)− λ1g1(x, y, z)− λ2g2(x, y, z)

= x2 + y2 + z2 − λ1(x2 + y2 − z2)− λ2(x+ y + z − 3).

We find the critical points of h:

2x = 2λ1x+ λ2

2y = 2λ1y + λ2

2z = −2λ1z + λ2

z2 = x2 + y2

3 = x+ y + z.

Suppose we substract the first equation from the second:

y − x = λ1(y − x).

So either x = y or λ1 = 1. Suppose x 6= y. Then λ1 = 1 and λ2 = 0. In this
case z = −z, so that z = 0. But then x2 + y2 = 0 and so x = y = 0, which is not
possible.

It follows that x = y, in which case z = ±
√

2x and

(2±
√

2)x = 3.

So

x =
3

2±
√

2
=

3(2∓
√

2)

2
.

This gives us two critical points:

p = (
3(2−

√
2)

2
,

3(2−
√

2)

2
,

3
√

2(2−
√

2)

2
)

q = (
3(2 +

√
2)

2
,

3(2 +
√

2)

2
,−3
√

2(2−
√

2)

2
).

Of the two, clearly the first is closest to the origin.
To finish, we had better show that this point is the closest to the origin on the

whole locus
F = { (x, y, z) ∈ R3 |x2 + y2 = z2, x+ y + z = 3 }.

Let
K = { (x, y, z) ∈ F |x2 + y2 + z2 ≤ 25 }.

Then K is closed and bounded, whence compact. So f achieves its minimum
somewhere on K, and so it must achieve its minimum at p. Clearly outside f is at
least 25 on F \K, and so f is a minimum at p on the whole of F .


