CALCULUS OF VARIATIONS

Example 1. Consider two circles of radius one, parallel to the z-axis, whose centers
are at (0,0,a) and (0,0, —a). If we connect them by a cylinder (of radius one), then
the surface area of the cylinder is 4wa. Can we connect them by a surface with a
smaller area?
We’ll connect them by a surface of cylindrical symmetry whose radius is given
by f: [—a,a] — R:
={(r0,2) : 0<0<2m —a<2<ar< f(2)}

We will want f(—a) = f(a) =1, so that the ends of the surface coincide with the
circle.
The area of this surface is

= [ FEVTF R

Example 2. Consider a ball traveling along a rail f: [0,a] — R, from z = 0 to
x = a, and with f(0) = f(a) = 0. If f(x) < 0 for x € (0,a) then the ball will
move from (0,0) to (a,0), given that there is a constant gravitational field exerting
a force of gm downwards.

The speed of the ball at height f(z) will satisfy 3mv(z)* = —mgf(z), so that

= /—2¢f(x). Hence the total travel time will be
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More generally, let L: R® — R be C?, let f: [a,b] — R be C?, and let

b
Jif] = / Lz, f(z), f (2)) da

be a functional, or a function from the space of functions to the reals. We would
like to minimize (or maximize) J: that is, we would like to find a function f such
that J[f] is minimal, and which satisfies some condition at a and b (e.g., f(a) = Cy
and f(b) = Cy for some constants C1,Cs € R.)
Assume f is a (local) minimum. Let h: [a,b] — R be a continuous function that
satisfies h(a) = h(b) = 0. Then for small € > 0, it will hold that J[f + eh] > J[f].
Fix h, and let

O(e) = J[f + €h).

Then ® has a minimum at € = 0, and ®'(0) = 0. Hence
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We can move the derivative into the integral to write
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where OL/0f and OL/0f’ denote the partial derivatives of L with respect to its
second and third argument, respectively. Applying integration by parts to the
second addend yields
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Since h vanishes at a and b, then the last term is zero, and we can write
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Now, this holds for any choice of h. We will need the following lemma:

b
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Lemma 3 (Fundamental lemma of the calculus of variations). Let g: [a,b] — R in
CF satisfy

/: g(x)h(x)dx =0

for all h: [a,b] — R in C* such that h(a) = h(b) = 0. Then g is identically zero on
[a,b].

Proof. Choose h(xz) = (x —a) - (b—x) - g(x). Then

b
/ (x —a)(z —b)g(z)?dz = 0.

Since the integrand is positive and continuous it must be zero everywhere. Hence
g is zero everywhere. O

Applying this above we have that
oL d oL
of dxdf
everywhere on [a,b]. This is called the Euler-Lagrange equation. Note that is has
to hold for all local minima, but may holds for other points too (and not only
maxima).
When L(z, f, f') does not depend on z, then this equation can be partially solved
to yield the Beltrami identity:
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for some constant C.
Let’s try to solve the first example. Trying to connect the two circles, we have

L(z, f(2), f'(2)) = f(2)V/1 + f'(2)*.

The Beltrami identity yields
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and

f=CvVi+f7,
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Solving for f’ yields

fF _vpe-c

dz C
We will solve for z as a function of f:
dz C

aif  Jpe-c?

and so

Z:C/\/fjjiicz = Ccosh™'(f/C)+ D

and we have
f(z) =Ccosh((z — D)/C).

This function is called a catenary.
Since f(—a) = f(a) =1 we can find C and D:

1= Ccosh((a— D)/C) = Ccosh((—a — D)/C) = Ccosh((a + D)/C),
where the last equality follows from the fact that cosh is an even function. Hence
(a - D)/C = (a+ D)/C,

and D = 0. C' is therefore the solution to
Ccosh(a/C) = 1.

This cannot be solved analytically. And it does not always have a solution! In that
case there is no continuous function that minimizes the surface area.
Let’s try to solve the second example. Here we have

2
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Applying again the Beltrami identity yields
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which simplifies to
1
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and further to
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Denote r = 2{}% Let’s parametrize x by 6:

x(0) = 2(9 — sin @),
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for 0 € [0,27], and let y(0) = f(x(0)). Then

Hence (1) becomes

This can be solved to yield
y(0) = g(cose —1).
Hence the graph of f is the parametrized curve
((8), y(0)) = g(o — sinf, cos0 — 1).

If we set /2 = a/(27) then this curve passes through (0,0) and (0,a). Hence the
solution is

(x(6),y(0)) = %(9 — sinf,cosf — 1),

The lowest point in the curve will be in its middle, at height a/m. This curve is
simply a cycloid.

Consider a particle moving under the influence of a potential U: R — R. If we
denote its position at time ¢ by x(t), then its kinetic energy is T'(t) = Sma’(t)%
Let

L(t,z,2') =T(t) = U(z) = tma’? — U(z).

The action between time to and t; is denoted by
t1

S = S[a] :/1L(t,x(t),x’(t))dt:/l[T(t)—U(a:(t))] dt:/ [Lma! (1)% — U(x(t))] dt

to to to
By the Euler-Lagrange equation, every minimal action trajectory satisfies

oL _d oL
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and so
dU (z) B dz’(t) _ )
4 m—g " =ma (t).
Since F = —%7 this can also be written as

F = ma.



