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1 Formal proofs

In this section we will tackle the following questions: What is a formal proof? When we

prove something, which arguments do we need to write in full, and which can we let the

reader complete? What can we assume is obvious? How do we use lemmas? Learning how

to do all this is like learning how to swim: it is impossible to do without active participation.

Exercise 1.1. Prove that there are infinitely many primes.

Theorem 1.2 (Pythagoras).
p

2 is irrational.

Proof. Assume, by way of contradiction, that
p

2 = m/n, where m/n is a reduced fraction.

Thus at least one of m or n is odd.

Since 2n2 = m2, m2 is even, and hence m is even. Thus m2 is divisible by 4, and so

m2/2 is even. Hence n2 = m2/2 is even, and thus n is also even, and we have reached a

contradiction.

Exercise 1.3. Prove that
p

3 is irrational.

Definition 1.4. Let A,B be sets. A bijection from A to B is a function f : A → B with the

property that for every b ∈B there is a unique a ∈ A such that f (b)= a.

Definition 1.5. Two sets A,B are said to have the same cardinality if there exists a bijec-

tion f : A → B.

Definition 1.6. An infinite set A is said to be countable if it has the same cardinality as

the natural numbers.

Note: this is sometimes refered to as a countable infinite set.

Exercise 1.7. Prove that N∪ {0} is countable.

Exercise 1.8. Let A be a disjoint union of countably many finite sets. Prove that A is finite

or countable.

Exercise 1.9. Prove that N×N is countable.

Exercise 1.10. Let A be the set of sequences in N∪ {0} that are zero from some point on. I.e.,

the set of sequences a = (a1,a2, . . .) such that there is some N such that an = 0 for all n ≥ N.

Show that A is countable.

Theorem 1.11 (Cantor). If an infinite set A is countable then the set of subsets of A is not

countable.

Proof. Denote by P(A) the set of subsets of A. Assume, by way of contradiction, that there

is a bijection f : N→ P(A). Denote A i = f (i), so that each A i is a subset of A, and P(A) =
{A1, A2, . . .}. Since A is countable we can likewise write A = {a1,a2, . . .}.
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Let B be the subset of A given by

B = {ai ∈ A : ai 6∈ f (i)}.

Since B ∈ P(A), and since f is a bijection, there is some k ∈N such that B = f (k). If ak ∈ B,

then, by the definition of B, ak 6∈ f (k). Hence ak 6∈ B. But if ak 6∈ f (k) then ak ∈ B, again by

the definition of B, and we have reached a contradiction.

Exercise 1.12. Let A be a set. Show there is no bijection between A and the set of subsets of

A.

Exercise 1.13. A prisoner escapes to the natural numbers. He chooses some n ∈N to hide on

the zeroth day. He also chooses some k ∈N, and every day hides at a number that is k higher

than in the previous day. Hence on day t ∈ {0,1,2, . . .} he hides at n+k · t.
Every day the detective can check one number and see if the prisoner is there. If he is there,

she wins. Otherwise she can check again the next day.

Formally, the game played between the prisoner and the detective is the following. The

prisoner’s strategy space is {(n, k) : n, k ∈ N}, and the detective’s strategy space is the set of

sequences (a0,a1,a2, . . .) in N. The detective wins if at = n+k · t for some t. The prisoner wins

otherwise.

Prove that the detective has a winning strategy. That is, prove that there exists a sequence

(a0,a1, . . .) such that for every (n, k) there is a t with at = n+k · t.
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2 Metrizable Topology

Definition 2.1. A metric on a set X is a map D : X × X → [0,∞) such that

1. D(x, y)= 0 iff x= y.

2. Symmetry. D(x, y)= D(y, x).

3. Triangle inequality. D(x, z)≤ D(x, y)+D(y, z).

A metric space is the pair (X ,D).

Definition 2.2. A simple, undirected weighted graph is a triplet (V ,E,w). V is the set

of vertices. The set of edges E is a subset of V ×V such that (v1,v2) ∈ E implies (v2,v1) ∈ E.

And w : E →R++ satisfies w(v1,v2)= w(v2,v1).

A path P from vertex v to vertex u is a sequence of vertices v = v1,v2, . . . ,vk = u such that

(vi,vi+1) ∈ E. The length of a path P is ℓ(P) =
∑k−1

i=1
w(vi,vi+1). Paths of length one is taken

to have zero weight.

A graph is strongly connected if for every v, u ∈ V there is a path from v to u. In a

strongly connected graph, the distance D(v, u) between vertices v and u is the minimum of

ℓ(P), where P ranges over all paths from v to u.

Exercise 2.3. Prove that the distance D is a metric on V .

Exercise 2.4. Prove that the following are metrics on R
n.

1. D2(x, y)=
√

∑

i(xi − yi)
2.

2. D1(x, y)=
√

∑

i |xi − yi|.

3.

D(x, y)=
{

1 if x 6= y

0 if x= y.

From here on, when we refer to R
n (and in particular R) we implicitly refer to the metric

space (Rn,D2).

Denote by C = {0,1}N the set of all functions from the natural numbers to {0,1}.

Exercise 2.5. Prove that D(x, y)= inf{2−i : (x(1), . . . , x(i))= (y(1), . . . , y(i))} is a metric on C .

We will call (C ,D) the Cantor set.

Exercise 2.6. Prove that if D : X × X → R satisfies the three properties of a metric then

D(x, y)≥ 0.

Exercise 2.7. Prove that if D : X × X →R is a metric then so is D̄(x, y)=min{1,D(x, y)}.
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In the following definitions (X ,D) is taken to be a metric space.

Definition 2.8. A sequence (xn)n in X converges to x ∈ X (written limn xn = x) if for every

ε> 0 there is an N > 0 such that D(xn, x)< ε for every n ≥ N.

Definition 2.9. A subset C ⊆ X is closed if, when every a sequence (xn)n in C converges to

x, then x ∈C. A set is open if it is the complement of a closed set.

A metrizable topology on a set X is a collection of open sets obtained from a metric as

described above.

Definition 2.10. A sequence (xn)n is Cauchy if for every ε there exists an N such that

D(xn, xm)< ε for all n, m≥ N.

Definition 2.11. The open ball of radius ε around x ∈ X is

Bε(x)= {y ∈ X : D(x, y)< ε}.

Exercise 2.12. For x in the Cantor set, what is B2−n(x)?

Exercise 2.13. Prove that (xn)n is Cauchy iff for every ε there is an x ∈ X such that all but

finitely many elements of {x1, x2, . . .} are in Bε(x).

Exercise 2.14. Show that if (xn)n converges then it is a Cauchy sequence.

An example of a sequence that is Cauchy but does not converge is xn = 1/n in the metric

space X = (0,1) with D(x, y)= |x− y|.

Exercise 2.15. Prove that (xn)n in the Cantor set is Cauchy iff for every i there is an N such

that xn(i)= xN (i) for all n ≥ N.

This is an important observation, because it shows that the ordering of the coordinates

in the definition of the metric does not affect convergence. And neither does the choice of

using 2−i in the definition of the metric. Any function of i that is monotone decreasing and

goes to zero as i tends to infinity would work.

Exercise 2.16. Show that if (xn)n is a Cauchy sequence that does not converge, then it has

no converging subsequences.

Definition 2.17. A metric space (X ,D) is complete if every Cauchy sequence in X con-

verges.

So X = (0,1) is not complete, by the example above.

Exercise 2.18. Prove that the Cantor set is complete.

Exercise 2.19. Prove that if a metric space is not complete then it has a sequence with no

converging subsequence.
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Exercise 2.20. Show that every sequence (xn)n in the Cantor set has a converging subse-

quence.

Recall that a subset of Rn (with the usual metric D2) is bounded if it is contained in the

ball Br(0) for some r > 0.

Definition 2.21. A metric space (X ,D) is totally bounded if for every ε there is a finite

set B = {x1, . . . , xn}⊆ X such that the union of Bε(x1), . . . ,Bε(xn) is equal to X .

Exercise 2.22. Prove that a subset of Rn is bounded if and only if it is totally bounded.

Exercise 2.23. Prove that the Cantor set is totally bounded.

Exercise 2.24. Prove that if a metric space is not totally bounded then it has a sequence that

has no converging subsequence.

Definition 2.25. A metric space (X ,D) is compact if every sequence in X has a converging

subsequence.

Note: this property is actually called sequential compactness, but for metric spaces

compactness and sequential compactness are identical.

Exercise 2.26. Prove that (X ,D) is compact iff it is totally bounded and complete.

Definition 2.27. Let (X ,D) and (X ′,D′) be metric spaces. We say that a function f : X → X ′

is continuous at x ∈ X if for any sequence (xn)n in X that converges to x it holds that

limn f (xn)= f (x). We say that f is continuous if it is continuous at every x ∈ X .

We say that a function f : X → R has a maximum if there is some z ∈ X such that f (x)≤
f (z) for all x ∈ X .

Exercise 2.28. Prove that if f : X → R is continuous, and if X is compact, then f has a

maximum.

Definition 2.29. Let (X ,D) be a metric space, and let A be a countable set. The topology

of pointwise convergence on Ω = X A is the topology in which a sequence (ωn)n in Ω

converges to ω iff ωn(a) converges to ω(a) for each a ∈ A.

Exercise 2.30. Find a metric on X A that induces the topology of pointwise convergence.

Exercise 2.31. Under the metric from Exercise 2.30, show that if (X ,D) is compact then X A

is also compact.

Definition 2.32. Let (X ,D) be a metric space, and let A be a countable set. The topology of

uniform convergence on Ω= X A is the topology in which a sequence (ωn)n in Ω converges

to ω iff for every ε there is an n such that D(ωn(a),ω(a))< ε for all a ∈ A.

Exercise 2.33. Find a metric on X A that induces the topology of uniform convergence.

Exercise 2.34. Under the metric from Exercise 2.33, give an example of a compact (X ,D)

such that X A is not compact.
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3 Convexity

Definition 3.1. A subset A ⊆ R
n is convex if for every x, y ∈ A and α ∈ (0,1) it holds that

αx+ (1−α)y is in A.

Exercise 3.2. What are the convex subsets of R?

Exercise 3.3. Show that if A is a convex and compact subset of R, and if f : A → A is

continuous, then there is some a ∈ A such that f (a)= a.

We will not prove this here, but the same statement is true in R
n. This is called the

Brouwer fixed point theorem.

Definition 3.4. A normed vector space is a vector space X with a norm ‖ ·‖ such that

1. ‖x‖ ∈ [0,∞).

2. ‖x‖ = 0 iff x= 0.

3. ‖αx‖ =α‖x‖.

4. ‖x+ y‖ ≤ ‖x‖+‖y‖.

Exercise 3.5. Denote by ℓ
∞ the set of all functions f : N→R for which there exists an M such

that | f (i)| ≤ M for all i ∈N. Let ‖ f ‖ =maxi | f (i)|. Show that ℓ∞ is a normed vector space.

Exercise 3.6. Prove that D(x, y)= ‖x− y‖ is a metric.

Exercise 3.7. Prove that multiplication by a scalar and addition are continuous under the

topology induced by D(x, y)= ‖x− y‖. The former is the map from R×X to X that maps (α, x)

to αx, and the latter is the map from X × X to X that maps (x, y) to x+ y.

Definition 3.8. A subset A of a normed vector space is convex if for every x, y ∈ A and

α ∈ (0,1) it holds that αx+ (1−α)y is in A.

Definition 3.9. Let A be a convex subset of a normed vector space. A function f : A → R is

called convex if f (αx+ (1−α)y)≤α f (x)+ (1−α) f (y) for all x, y ∈ A and α ∈ (0,1). It is called

strictly convex if the inequality holds strictly whenever x 6= y. f is (strictly) concave if

− f is (strictly) convex.

Exercise 3.10. Let A be a compact, convex subset of a normed vector space, and let f : A →R

be strictly concave and continuous. Show that there is a unique z ∈ A such that f (x) ≤ f (z)

for all x ∈ A.

Definition 3.11. A linear functional on a normed vector space X is a map f : X →R such

that f (x+ y) = f (x)+ f (y) and f (αx) = α f (x). It is bounded if there is some M such that

| f (x)| ≤ M‖x‖ for all x.
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Exercise 3.12. Show that if f is a linear functional on R
n then f is of the form f (x) =

∑n
i=1

xi yi for some y ∈R
n.

Exercise 3.13. Show that a linear functional on normed vector space is bounded iff it is

continuous.

Definition 3.14. Let X be a normed vector space. A hyperplane is a subset H ⊆ X that

takes the form

H = {x ∈ X : f (x)= c}

for some c ∈R and bounded linear functional f : X →R that is not identically 0.

Exercise 3.15. Show that a hyperplane in R
n is of the form

H = {w+ x : w ∈W}

for some x ∈R
n and W a vector subspace of Rn.

Exercise 3.16. Let A be a closed convex subset of Rn, and let b ∈R
n be any point that is not

in A. Show that there is an a ∈ A that minimizes the distance to b, among all points in A.

Exercise 3.17. Let A,B be disjoint closed convex subsets of Rn. Then there is a linear func-

tional f on R
n and a c ∈R such that f (x)> c and f (y)< c for all x ∈ A and y ∈B.

Definition 3.18. A closed half-space of a normed vector space X is the set of points {x :

f (x)≥ c} for some linear functional f : X →R and c ∈R.

Exercise 3.19. Every closed convex subset of Rn is equal to the intersection of all the closed

half-spaces that contain it.

Definition 3.20. Let A be a convex subset of a normed vector space X . A point x ∈ X is

extreme if there are no y 6= z ∈ X and α ∈ (0,1) such that x =αy+ (1−α)z.

Theorem 3.21 (Krein-Milman). Let A be a compact convex subset of a normed vector space

X . Let C be the set of convex combinations of the extreme points of A: i.e., each element of

C is of the form
∑n

i=1
αixi, where αi ≥ 0,

∑

iαi = 1 and xi is extreme. Then A is equal to the

closure of C.
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4 Solutions

Exercise 2.5. Given x, y ∈ C , let R(x, y) = {2−i : (x(1), . . . , x(i)) = (y(1), . . . , y(i))}, so that

D(x, y)= infR(x, y).

We verify the three properties of a metric.

1. Since R(x, x) = {2−1,2−2,2−3, . . .}, we have that D(x, x) = 0. Suppose D(x, y) = 0. Then

R(x, y)= {2−1,2−2,2−3, . . .}, and so x(i)= y(i) for all i, and x = y.

2. Since R(x, y)= R(y, x), D(x, y)= D(y, x).

3. If 2−i is in both R(x, y) and R(y, z), then

(x(1), . . . , x(i)= (y(1), . . . , y(n))= (z(1), . . ., z(n)),

and so 2−i ∈ R(x, z). Hence R(x, y)∩R(y, z)⊆ R(x, z), and thus

D(x, z)= infR(x, z)≤ inf(R(x, y)∩R(y, z)).

Since

inf(R(x, y)∩R(y, z))=max{infR(x, y), infR(y, z)}=max{D(x, y),D(y, z)}

we have shown that

D(x, z)≤max{D(x, y),D(y, z)},

which is, in turn, at most D(x, y)+D(y, z).

Exercise 2.6. By the triangle inequality, 0 = D(x, x) ≤ D(x, y) + D(y, x). By symmetry

D(y, x)= D(x, y), and so 0≤ 2D(x, y).

Exercise 2.7. We verify the three properties of a metric:

1. D̄(x, x) = min{1,D(x, x)} = min{1,0} = 0. Conversely, assume that D̄(x, y) = 0. Then

min{1,D(x, y)}= 0, and so D(x, y)= 0 and x = y.

2. By the symmetry of D, D̄(x, y)=min{1,D(x, y)}=min{1,D(y, x)}= D̄(y, x).

3. Note that for any a, b ∈ R+, min{1,a+ b} ≤ min{1,a}+min{1, b}. This holds because if

a+b ≤ 1 then both sides of the inequality are equal to a+b, and if a+b > 1 then the left

hand side is 1 while the right hand side is at least 1. It thus follows from the triangle

inequality of D that

D̄(x, z)=min{1,D(x, z)}

≤min{1,D(x, y)+D(y, z)}

≤min{1,D(x, y)}+min{1,D(y, z)}

= D̄(x, y)+ D̄(y, z).
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Exercise 2.13. Suppose (xn)n is Cauchy. Then for every ε there is an N such that D(xn, xm)<
ε for all n, m ≥ N. In particular D(xn, xN ) < ε for all n ≥ N, and thus all the elements of the

sequence except perhaps x1, . . . , xN−1 are in Bε(xN ).

For the other direction, the condition implies that for every ε/2 there is an x such theta

D(xn, x)< ε/2 for all n but finitely many. Hence there exists an N such that D(xn, x)< ε/2 for

all n ≥ N. Hence, for any n, m≥ N the triangle inequality implies that

D(xn, xm)≤ D(xn, x)+D(x, xm)< ε/2+ε/2= ε,

and so (xn)n is Cauchy.

Exercise 2.14. Let limn xn = x, so that limn D(xn, x) = 0. Then for every ε/2 there is an N

such that D(xn, x) < ε/2 for all n ≥ N. Therefore, by the triangle inequality, it holds for all

n, m≥ N that

D(xn, xm)≤ D(xn, x)+D(x, nm)< ε/2+ε/2= ε,

and so (xn)n is a Cauchy sequence.

Exercise 2.15. Suppose (xn)n is Cauchy. Then for every i there is an N such that D(xn, xN )≤
2−i for all n ≥ N. By the definition of D, this means that (xn(1), . . ., xn(i)) = (xN (1), . . ., xN (i)),

and in particular xn(i)= xN (i).

Conversely, given ε, choose i so that 2−i < ε/2. By assumption, for each j ≤ i there is an

N j such that xn(i) = xN j
(i) for all n ≥ N j. Hence for N = max{N1, . . . , Ni} it holds that for all

n ≥ N that (xn(1), . . ., xn(i)) = (xN (1), . . . , xN(i), and thus D(xn, xN) ≤ 2−i < ε/2. It follows that

for n, m≥ N it holds that

D(xn, xm)≤ D(xn, xN )+D(xm, xN )< ε.

Exercise 2.16. Let (xnm
)m be a subsequence, and assume towards a contradiction that it

converges to some x ∈ X , so that limm D(xnm
, x) = 0. Then for every ε/2 > 0 there is some N

so that D(xnm
, x) < ε/2 for all m ≥ N. Since the sequence is Cauchy, there is some N ′ so that

D(xk, xnm
) < ε/2 for all k, nm ≥ N ′. Hence, for all n ≥ max{N, N ′} it follows from the triangle

inequality that

D(xn, x)≤ D(xn, xnm
)+D(xnm

, x)< ε/2+ε/2= ε.

Hence limn Dn(xn, x) = 0, and thus (xn)n converges, in contradiction to our assumption. It

follows that (xn)n does not have any converging subsequences.

Exercise 2.19. Suppose (X ,D) is not complete. Then, by definition, it has a Cauchy se-

quence (xn)n that does not converge to any x. By Exercise 2.16 this sequence has no converg-

ing subsequences.

11



Exercise 2.20. Let (xn)n be a sequence in the Cantor set. Given x ∈C , we will denote by

A(m, x) the set of indices n such that (xn(1), . . . , xn(m))= (x(1), . . . , x(m)). We set A(0, x)=N.

We first claim that there exists an x ∈ C such that A(m, x) is infinite for all m. We

construct such an x by induction on m. For m = 0, A(m, x) is infinite by definition, for

any x. Assume that we have chosen x(1), . . . , x(m) so that A(0, x), . . . , A(m, x) are all infinite.

For each n ∈ A(m, x), either xn(m+1) = 1 or xn(m+1) = 0. Since A(m, x) is infinite, either

xn(m+1) = 0 for infinitely many n ∈ A(m, x), or xn(m+1)= 1 for infinitely many n ∈ A(m, x)

(or both). In the former case choose x(m+1) = 0, and otherwise choose x(m+1) = 1. We

thus have that A(m+1, x) is infinite. Since we did not change x(1), . . ., x(m), we still have

that A(0, x), . . ., A(m, x) are infinite. Hence, by induction, we have constructed an x such that

A(m, x) is infinite for all m.

Define nm = min A(m, x). Since each A(m, x) is infinite it is in particular non-empty, and

thus has a minimum. We claim that limm xnm
= x. This holds because nm ∈ A(m, x), and so

xnm
agrees with x on the coordinates 1 through m. Thus D(xn, x)≤ 2−m, and limm D(xnm

, x)=
0.

Exercise 4.1. Prove that if a metric space is not totally bounded then it has a sequence that

has no converging subsequence.

Exercise 2.24. If (X ,D) is not totally bounded then there is some ε such that no finite

collection of balls of radius ε covers X . We construct a sequence (xn)n that has no converging

subsequences.

Let x1 be any element of x. Given x1, . . . , xn, let xn+1 be any element of x that is not in

the union of the balls Bε(x1), . . . ,Bε(xn). There is such an element, since X is not the union

of any finite set of balls of radius ε. Thus, D(xn, xm) ≥ ε for all n, m, and (xn)n is not Cauchy.

Moreover, no subsequence (xnm
)m can be Cauchy, since the distance between any pair of its

elements is again at least ε. Hence, by Exercise 2.14, no subsequence is converging.

Exercise 2.26. If X is not complete or not totally bounded then it is not compact, by exer-

cises 2.19 and 2.24. It thus remains to be shown that if X is totally bounded and complete

then it is compact. To this end it suffices to show that every sequence has a Cauchy subse-

quence, from which convergence will follow by completeness.

For each m, let Ym be a finite set of balls of radius 2−m whose union is equal to X . Let

(xn)n be a sequence in X . Similarly to the proof of Exercise 2.20, there is some B1 ∈ Y1

that contains infinitely many of the elements of (xn)n. Then, there some B2 ∈ Y2 that in-

tersects B1, and contains infinitely many of the elements of (xn)n. Continuing, we arrive

at a sequence of balls (Bm)m with the property that each contains infinitely many elements

of (xn)n, such that the radius of Bm is 2−m, and such that Bm intersects Bm+1. Consider

the subsequence (xnm
)m where nm is the minimal index such that xnm

∈ Bm. By the inter-

section property of the balls, the distance between any point x ∈ Bm and y ∈ Bk is at most

4 ·2−min{m,k}, as a consequence of repeated applications of the triangle inequality. We thus

have that if m, k ≥ N then D(xnm
, xnk

)≤ 4 ·2−N , and thus (xnm
)m is a Cauchy sequence.
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Exercise 2.28. Denote f (X )= {c ∈R : f (x)= c for some x ∈ X }.

Let c = sup f (X ), with c = ∞ in case f (X ) is not bounded from above. Let (cn)n be a

sequence in f (X ) with limn cn = c. Then there exists a sequence (xn)n in R with f (xn) = cn,

and hence limn f (xn) = c. Let (xnm
)m be a converging subsequence, and denote its limit by

z. Then, since f is continuous, limm f (xnm
) = f (z), and so f (z) = c. Thus f (x) ≤ f (z) for all

x ∈ X , and f has a maximum.

Exercise 2.30. Denote D̄(x, y) = min{1,D(x, y)}. Enumerate A = {a1,a2, . . .}. Let DΩ be the

metric on Ω= X A given by

DΩ(ω,θ)=
∑

i

2−iD̄(ω(ai),θ(ai)).

We now show that DΩ induces the topology of pointwise convergence. That is, that a

sequence (ωn)n converges pointwise to ω iff limn DΩ(ωn,ω)= 0.

Suppose that (ωn)n converges pointwise to ω, i.e., limn D(ωn(a),ω(a)) = 0 for all a ∈ A.

Then also limn D̄(ωn(a),ω(a)) = 0. It follows that for every m there is an N such that

D̄(ωn(a),ω(a))≤ 1/m2 for all a ∈ {a1, . . . ,am} and all n ≥ N. Thus, for all such n,

DΩ(ωn,ω)=
∑

i

2−iD̄(ωn(ai),ω(ai)

=
m
∑

i=1

2−iD̄(ωn(ai),ω(ai)+
∞
∑

i=m+1

2−iD̄(ωn(ai),ω(ai)

≤
m
∑

i=1

1

m2
+

∞
∑

i=m+1

2−i

=
1

m
+2−m,

and so limn DΩ(ωn,ω)= 0.

Conversely, suppose that limn DΩ(ωn,ω)= 0. Then limn D̄(ωn(ai),ω(ai))= 0, since D̄(ωn(ai),ω(ai))≤
2iDΩ(ωn,ω). But then also limn D(ωn(ai),ω(ai))= 0.

Exercise 2.33. Denote D̄(x, y)=min{1,D(x, y)}. Let DΩ be the metric on Ω= X A given by

DΩ(ω,θ)=min{D̄(ω(ai),θ(ai)) : a ∈ A}

We now show that DΩ induces the topology of uniform convergence. That is, that a

sequence (ωn)n converges uniformly to ω iff limn DΩ(ωn,ω)= 0.

Suppose that (ωn)n converges uniformly to ω, i.e., for every ε there is an N such that

D(ωn(a),ω(a)) < ε for all a ∈ A and n ≥ N. Then D̄(ωn(a),ω(a)) < ε for all a ∈ A and n ≥ N,

and hence DΩ(ωn,ω)< ε. Thus indeed limn DΩ(ωn,ω)= 0.

Conversely, suppose that limn DΩ(ωn,ω) = 0. Then, for every ε there is an N such that

D̄(ωn(a),ω(a)) < ε for all a ∈ A. It follows that, for ε< 1, D(ωn(a),ω(a)) < ε for all a ∈ A and

n ≥ N, and so (ωn)n converges uniformly to ω.
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Exercise 3.2. Clearly, the empty set is convex, as are the closed intervals [a, b], the open

intervals (a, b) and the half open intervals [a, b) and (a, b], where a, b ∈R∪ {∞}.

To see that these are all, suppose A is non-empty and convex. Let a= inf A and b = sup A.

Then for every x in (a, b) there are a′, b′ ∈ A such that a′ ≤ x≤ b′, and so x ∈ A. Thus A is one

of (a, b), [a, b], [a, b) and (a, b], depending on whether a is in A and / or b is in A.

Exercise 3.10. By compactness and continuity, f has at least one such z. To show unique-

ness, suppose f (z) = f (z′) with z′ 6= z. Then, since A is convex, z/2+ z′/2 ∈ A, and by strict

concavity,

f (z/2+ z′/2)> f (z)/2+ f (z′)/2= f (z),

in contradiction to the assumption that f (x)≤ f (z) for all x ∈ A.

Exercise 3.12. Let f be a linear functional on R
n. Let yi = f (e i), where e i is the ith vector

in the standard basis of Rn. Then x=
∑

i xi e i, and so, by the linearity of f ,

f (x)= f

(

∑

i

xi e i

)

=
∑

i

xi f (e i)=
∑

i

xi yi.

Exercise 3.13. Suppose that f is not bounded. Then there is a sequence (xn)n, with ‖x‖ ≤ 1,

such that limn f (xn) =∞. By restricting to a subsequence, we may assume that f (xn) ≥ n.

Let yn = xn/n. Then, by linearity, f (yn)≥ 1. But ‖yn‖ ≤ 1/n, and so limn yn = 0. Since f (0)= 0

(by linearity), we have that limn f (yn)= 1 6= f (limn yn), and so f is not continuous.

Suppose that f is bounded. Then there is some M such that | f (x)| ≤ M‖x‖. Let (xn)n be

a sequence in X that converges to 0, so that limn ‖xn‖ = 0. Then

lim
n

| f (xn)| ≤ lim
n

M‖xn‖= 0,

and thus also limn f (xn)= 0. Thus f is cotinuous at 0. Finally, suppose limn xn = x. Then

lim
n

f (xn)= lim
n

f (xn)− f (x)+ f (x)

= lim
n

f (xn − x)+ f (x)

= f (x)+ lim
n

f (xn − x).

Since f is continuous at 0, and since limn xn−x= 0, we have that limn f (xn−x)= 0, and thus

limn f (xn)= f (x), and f is continuous.

14


	Formal proofs
	Metrizable Topology
	Convexity
	Solutions

