PS/Ec 172, Homework 6 Due Friday, May 22ND

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

- (1) Bundling. Andrew walks into a store with the intention of buying a loaf of bread and a stick of butter. His valuations for the two items are chosen independently from the uniform distribution on [0, 1]. Rebecca, the store owner, has to set the prices. We assume that Andrew will buy for any price that is lower than his valuation.
 - (a) 20 points. Assume first that Rebecca sets a price b_l for the loaf and b_s for the stick. What is her expected revenue, as a function of b_l and b_s ?
 - (b) 5 points. What is the maximal expected revenue she can get?
 - (c) 20 points. Rebecca now decides to bundle: she sets a price b_b for buying both items together, and does not offer each one of them separately. That is, she offers Andrew to either buy both for b_b , or else get neither. What is her expected revenue, as a function of b_b ?
 - (d) 5 points. What is the maximal expected revenue she can get now?
- (2) Repeated prisoner's dilemma. Let G_0 be the following version of prisoner's dilemma:

Let G be the repeated game in which G_0 is played for T periods. The strategy *tit-for-tat* is the strategy in which a player plays C in the first period, and henceforth always plays the same strategy that the other player played in the previous round. Let s be the strategy profile in which both players play tit-for-tat.

- (a) 25 points. Let T = 10, and let the players' utilities be the sum of their stage utilities. Is s an equilibrium?
- (b) 25 points. Let $T = \infty$, and let the players' utilities be δ -discounting. For which values of δ is s an equilibrium?
- (3) Bonus question: Mind reading (with high probability). Ali and Fatima play a game. Ali picks a finite subset $F \subset \mathbb{N}$, and Fatima picks an $n \in \mathbb{N}$. Ali wins if $n \in F$, and Fatima wins otherwise.

Before choosing her n, Fatima picks any subset $S \subseteq \mathbb{N}$. For example, S could be the even numbers. All reveals to Fatima the intersection $S \cap F$; we assume he does so truthfully. Fatima can now choose her number n. It

Omer Tamuz. Email: tamuz@caltech.edu.

can depend on Ali's answer, but it cannot be in S. She wins if $n \notin F$, and otherwise Ali wins.

Formally, a pure strategy for Ali is a choice of F. A pure strategy for Fatima is a choice of S, plus a function from subsets of S to $\mathbb{N} \setminus S$; this is the function that specifies n given $S \cap F$.

- (a) 1 point. Show that for every pure strategy of Fatima there is a pure strategy of Ali that ensures that he wins, and that for every pure strategy of Ali there is a pure strategy of Fatima that ensures that she wins.
- (b) 1 point. Show that Fatima has a mixed strategy (i.e., a randomly picked strategy) such that for every F, her probability of winning is at least 1 1/2020.