PS/Ec 172, Homework 7 Due Thursday, March 8^{TH}

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

(1) A repeated game. Consider the following base game G_0 :

	D	C	F
D	0, 0	1, 0	0, 1
C	0, 1	2, 2	-2, 3
F	1, 0	3, -2	-2, -2

- (a) 50 points. Calculate the feasible and enforceable sets for this game.
- (b) 50 points. Find a subgame perfect Nash equilibrium for the G_0 -infinitely repeated game with limit of means utilities whose payoff profile is (2, 2).
- (2) Bonus question: The incredible casino. A casino has a sequence of slot machines $(M_1, M_2, ...)$. Each machine requires the gambler to swipe her credit card, and has a single button. After swiping the card and pressing the button, machine M_n credits the gambler 1 dollar with probability $1-1/n^2$, and otherwise charges her n^2 dollars.
 - (a) 1 point. What is the gambler's expected revenue when using machine M_n ?
 - (b) 1 point. Kim gambles once at each machine, in order: M₁, M₂, M₃, etc. Explain why, with probability one, her revenue will tend to infinity. Hint: use the Borel-Cantelli lemma. You can read about it on Wikipedia: http://en.wikipedia.org/wiki/Borel-Cantelli_lemma.

Omer Tamuz. Email: tamuz@caltech.edu.